You are currently browsing the tag archive for the ‘Christopher Langton’ tag.

Saramago Caos quote - Lisbon, Vitorino Ramos 2013Photo – “O caos é uma ordem por decifrar” (Portuguese), that is… “Chaos is an order yet to be deciphered“, a quote from the Nobel Prize in Literature (1998) José Saramago [Lisbon, V. Ramos, 2013].

In 1990 (*), on one of his now famous works, Christopher Langton (link) decided to ask an important question. In order for computation to emerge spontaneously and become an important factor in the dynamics of a system, the material substrate must support the primitive functions required for computation: the transmission, storage, and modification of information. He then asked: Under what conditions might we expect physical systems to support such computational primitives?

Naturally, the question is difficult to address directly. Instead, he decided to reformulate the question in the context of a class of formal abstractions of physical systems: cellular automata (CAs). First, he introduce cellular automata and a simple scheme for parametrising (lambda parameter, λ) the space of all possible CA rules. Then he applied this parametrisation scheme to the space of possible one-dimensional CAs in a qualitative survey of the different dynamical regimes existing in CA rule space and their relationship to one another.

By presenting a quantitative picture of these structural relationships, using data from an extensive survey of two-dimensional CAs, he finally review the observed relationships among dynamical regimes, discussing their implications for the more general question raised above.  Langton found out that for a 2-state, 1-r neighbourhood, 1D cellular automata the optimal λ value is close to 0.5. For a 2-state, Moore neighbourhood, 2D cellular automata, like Conway’s Life, the λ value is then 0.273.

We then find that by selecting an appropriate parametrisation of the space of CAs, one observes a phase transition between highly ordered and highly disordered dynamics, analogous to the phase transition between the solid and fluid states of matter. Furthermore, Langton observed that CAs exhibiting the most complex behaviour – both qualitatively and quantitatively- are found generically in the vicinity of this phase transition. Most importantly, he observed that CAs in the transition region have the greatest potential for the support of information storage, transmission, and modification, and therefore for the emergence of computation. He concludes:

(…) These observations suggest that  there is  a fundamental connection between phase transitions and computation, leading to the following hypothesis concerning the emergence of computation in  physical systems: Computation may emerge spontaneously and come to dominate the dynamics of physical systems when those systems are at or near a transition between their solid and fluid phases, especially in the vicinity of a second-order or “critical” transition. (…)

Moreover, we observe surprising similarities between the behaviours of computations and systems near phase transitions, finding analogs of computational complexity classes and the halting problem (Turing) within the phenomenology of phase transitions. Langton, concludes that there is a fundamental connection between computation and phase transitions, especially second-order or “critical” transitions, discussing some of the implications for our understanding of nature if such a connection is borne out.

The full paper (*), Christopher G. Langton. “Computation at the edge of chaos”. Physica D, 42, 1990, is available online, here [PDF].

From left to rigth, Nelson Minar, JJ Merelo (one of my co-authors), Manor Askenazi and Chris Langton (founding father of Artificial Life) at the El Farol Bar, Santa Fe, New Mexico, during summer 1995.

From left to rigth, Nelson Minar, JJ Merelo (one of my co-authors), Manor Askenazi and Chris Langton (founding father of Artificial Life) at the El Farol Bar, Santa Fe, New Mexico, during summer 1995. At the same year, Chris was the editor of the well-know Artificial Life book, by MIT Press, and JJ for the 3rd European Conference on Artificial Life, Granada, Spain.

In case you do not have a clue what the El Farol Bar meant to the Santa Fe Institute (SFI), have a read here to Brian Arthur‘s paper “Inductive Reasoning and Bounded Rationality: The El Farol bar problem“, American Economic Review, 84, 406-411, 1994 (or check previous posts). I am happy to say that I was also there, visiting Santa Fe back in 2000, speaking with, among other people with Cosma Shalizi, as well as having a cigar and a beer at the El Farol. Much probably at this table, which was near the front door window, one of my favourite ones during my two week stay.

Finally, and in what regards the ongoing present financial world crisis, here’s a quote from 1994’s Arthur’s paper:

[…] Economists have long been uneasy with the assumption of perfect, deductive rationality in decision contexts that are complicated and potentially ill-defined. The level at which humans can apply perfect rationality is surprisingly modest. Yet it has not been clear how to deal with imperfect or bounded rationality. From the reasoning given above, I believe that as humans in these contexts we use inductive reasoning: we induce a variety of working hypotheses, act upon the most credible, and replace hypotheses with new ones if they cease to work. Such reasoning can be modeled in a variety of ways. Usually this leads to a rich psychological world in which agents’ ideas or mental models compete for survival against other agents’ ideas or mental models–a world that is both evolutionary and complex. […]

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.


Blog Stats

  • 256,612 hits