You are currently browsing the tag archive for the ‘Artificial Life’ tag.

Vitorino Ramos - Citations2016Jan

2016 – Up now, an overall of 1567 citations among 74 works (including 3 books) on GOOGLE SCHOLAR (https://scholar.google.com/citations?user=gSyQ-g8AAAAJ&hl=en) [with an Hirsh h-index=19, and an average of 160.2 citations each for any work on my top five] + 900 citations among 57 works on the new RESEARCH GATE site (https://www.researchgate.net/profile/Vitorino_Ramos).

Refs.: Science, Artificial Intelligence, Swarm Intelligence, Data-Mining, Big-Data, Evolutionary Computation, Complex Systems, Image Analysis, Pattern Recognition, Data Analysis.

Complete circuit diagram with pheromone - Cristian Jimenez-Romero, David Sousa-Rodrigues, Jeffrey H. Johnson, Vitorino Ramos; Figure – Neural circuit controller of the virtual ant (page 3, fig. 2). [URL: http://arxiv.org/abs/1507.08467 ]

Intelligence and decision in foraging ants. Individual or Collective? Internal or External? What is the right balance between the two. Can one have internal intelligence without external intelligence? Can one take examples from nature to build in silico artificial lives that present us with interesting patterns? We explore a model of foraging ants in this paper that will be presented in early September in Exeter, UK, at UKCI 2015. (available on arXiv [PDF] and ResearchGate)

Cristian Jimenez-Romero, David Sousa-Rodrigues, Jeffrey H. Johnson, Vitorino Ramos; “A Model for Foraging Ants, Controlled by Spiking Neural Networks and Double Pheromones“, UKCI 2015 Computational Intelligence – University of Exeter, UK, September 2015.

Abstract: A model of an Ant System where ants are controlled by a spiking neural circuit and a second order pheromone mechanism in a foraging task is presented. A neural circuit is trained for individual ants and subsequently the ants are exposed to a virtual environment where a swarm of ants performed a resource foraging task. The model comprises an associative and unsupervised learning strategy for the neural circuit of the ant. The neural circuit adapts to the environment by means of classical conditioning. The initially unknown environment includes different types of stimuli representing food (rewarding) and obstacles (harmful) which, when they come in direct contact with the ant, elicit a reflex response in the motor neural system of the ant: moving towards or away from the source of the stimulus. The spiking neural circuits of the ant is trained to identify food and obstacles and move towards the former and avoid the latter. The ants are released on a landscape with multiple food sources where one ant alone would have difficulty harvesting the landscape to maximum efficiency. In this case the introduction of a double pheromone mechanism (positive and negative reinforcement feedback) yields better results than traditional ant colony optimization strategies. Traditional ant systems include mainly a positive reinforcement pheromone. This approach uses a second pheromone that acts as a marker for forbidden paths (negative feedback). This blockade is not permanent and is controlled by the evaporation rate of the pheromones. The combined action of both pheromones acts as a collective stigmergic memory of the swarm, which reduces the search space of the problem. This paper explores how the adaptation and learning abilities observed in biologically inspired cognitive architectures is synergistically enhanced by swarm optimization strategies. The model portraits two forms of artificial intelligent behaviour: at the individual level the spiking neural network is the main controller and at the collective level the pheromone distribution is a map towards the solution emerged by the colony. The presented model is an important pedagogical tool as it is also an easy to use library that allows access to the spiking neural network paradigm from inside a Netlogo—a language used mostly in agent based modelling and experimentation with complex systems.

References:

[1] C. G. Langton, “Studying artificial life with cellular automata,” Physica D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 120 – 149, 1986, proceedings of the Fifth Annual International Conference. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/016727898690237X
[2] A. Abraham and V. Ramos, “Web usage mining using artificial ant colony clustering and linear genetic programming,” in Proceedings of the Congress on Evolutionary Computation. Australia: IEEE Press, 2003, pp. 1384–1391.
[3] V. Ramos, F. Muge, and P. Pina, “Self-organized data and image retrieval as a consequence of inter-dynamic synergistic relationships in artificial ant colonies,” Hybrid Intelligent Systems, vol. 87, 2002.
[4] V. Ramos and J. J. Merelo, “Self-organized stigmergic document maps: Environment as a mechanism for context learning,” in Proceddings of the AEB, Merida, Spain, February 2002. ´
[5] D. Sousa-Rodrigues and V. Ramos, “Traversing news with ant colony optimisation and negative pheromones,” in European Conference in Complex Systems, Lucca, Italy, Sep 2014.
[6] E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial Systems, 1st ed., ser. Santa Fe Insitute Studies In The Sciences of Complexity. 198 Madison Avenue, New York: Oxford University Press, USA, Sep. 1999.
[7] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,” Universite Libre de Bruxelles, Tech. Rep. TR/IRIDIA/1996-5, ´ 1996.
[8] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, vol. 5, no. 2, pp. 137– 172, Apr. 1999. [Online]. Available: http://dx.doi.org/10.1162/ 106454699568728
[9] L. M. Gambardella and M. Dorigo, “Ant-q: A reinforcement learning approach to the travelling salesman problem,” in Proceedings of the ML-95, Twelfth Intern. Conf. on Machine Learning, M. Kaufman, Ed., 1995, pp. 252–260.
[10] A. Gupta, V. Nagarajan, and R. Ravi, “Approximation algorithms for optimal decision trees and adaptive tsp problems,” in Proceedings of the 37th international colloquium conference on Automata, languages and programming, ser. ICALP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 690–701. [Online]. Available: http://dl.acm.org/citation.cfm?id=1880918.1880993
[11] V. Ramos, D. Sousa-Rodrigues, and J. Louçã, “Second order ˜ swarm intelligence,” in HAIS’13. 8th International Conference on Hybrid Artificial Intelligence Systems, ser. Lecture Notes in Computer Science, J.-S. Pan, M. Polycarpou, M. Wozniak, A. Carvalho, ´ H. Quintian, and E. Corchado, Eds. Salamanca, Spain: Springer ´ Berlin Heidelberg, Sep 2013, vol. 8073, pp. 411–420.
[12] W. Maass and C. M. Bishop, Pulsed Neural Networks. Cambridge, Massachusetts: MIT Press, 1998.
[13] E. M. Izhikevich and E. M. Izhikevich, “Simple model of spiking neurons.” IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 14, no. 6, pp. 1569–72, 2003. [Online]. Available: http://www.ncbi.nlm.nih. gov/pubmed/18244602
[14] C. Liu and J. Shapiro, “Implementing classical conditioning with spiking neurons,” in Artificial Neural Networks ICANN 2007, ser. Lecture Notes in Computer Science, J. de S, L. Alexandre, W. Duch, and D. Mandic, Eds. Springer Berlin Heidelberg, 2007, vol. 4668, pp. 400–410. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74690-4 41
[15] J. Haenicke, E. Pamir, and M. P. Nawrot, “A spiking neuronal network model of fast associative learning in the honeybee,” Frontiers in Computational Neuroscience, no. 149, 2012. [Online]. Available: http://www.frontiersin.org/computational neuroscience/10.3389/conf.fncom.2012.55.00149/full
[16] L. I. Helgadottir, J. Haenicke, T. Landgraf, R. Rojas, and M. P. Nawrot, “Conditioned behavior in a robot controlled by a spiking neural network,” in International IEEE/EMBS Conference on Neural Engineering, NER, 2013, pp. 891–894.
[17] A. Cyr and M. Boukadoum, “Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks,” pp. 257–272, 2012.
[18] X. Wang, Z. G. Hou, F. Lv, M. Tan, and Y. Wang, “Mobile robots’ modular navigation controller using spiking neural networks,” Neurocomputing, vol. 134, pp. 230–238, 2014.
[19] C. Hausler, M. P. Nawrot, and M. Schmuker, “A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee,” in 2011 5th International IEEE/EMBS Conference on Neural Engineering, NER 2011, 2011, pp. 198–202.
[20] U. Wilensky, “Netlogo,” Evanston IL, USA, 1999. [Online]. Available: http://ccl.northwestern.edu/netlogo/
[21] C. Jimenez-Romero and J. Johnson, “Accepted abstract: Simulation of agents and robots controlled by spiking neural networks using netlogo,” in International Conference on Brain Engineering and Neuro-computing, Mykonos, Greece, Oct 2015.
[22] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002.
[23] J. v. H. W Gerstner, R Kempter and H. Wagner, “A neuronal learning rule for sub-millisecond temporal coding,” Nature, vol. 386, pp. 76–78, 1996.
[24] I. P. Pavlov, “Conditioned reflexes: An investigation of the activity of the cerebral cortex,” New York, 1927.
[25] E. J. H. Robinson, D. E. Jackson, M. Holcombe, and F. L. W. Ratnieks, “Insect communication: ‘no entry’ signal in ant foraging,” Nature, vol. 438, no. 7067, pp. 442–442, 11 2005. [Online]. Available: http://dx.doi.org/10.1038/438442a
[26] E. J. Robinson, D. Jackson, M. Holcombe, and F. L. Ratnieks, “No entry signal in ant foraging (hymenoptera: Formicidae): new insights from an agent-based model,” Myrmecological News, vol. 10, no. 120, 2007.
[27] D. Sousa-Rodrigues, J. Louçã, and V. Ramos, “From standard ˜ to second-order swarm intelligence phase-space maps,” in 8th European Conference on Complex Systems, S. Thurner, Ed., Vienna, Austria, Sep 2011.
[28] V. Ramos, D. Sousa-Rodrigues, and J. Louçã, “Spatio-temporal ˜ dynamics on co-evolved stigmergy,” in 8th European Conference on Complex Systems, S. Thurner, Ed., Vienna, Austria, 9 2011.
[29] S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complexity,” in International conference on complex systems. Boston, MA, 2004, pp. 16–21.

David MS Rodrigues Reading the News Through its Structure New Hybrid Connectivity Based ApproachesFigure – Two simplicies a and b connected by the 2-dimensional face, the triangle {1;2;3}. In the analysis of the time-line of The Guardian newspaper (link) the system used feature vectors based on frequency of words and them computed similarity between documents based on those feature vectors. This is a purely statistical approach that requires great computational power and that is difficult for problems that have large feature vectors and many documents. Feature vectors with 100,000 or more items are common and computing similarities between these documents becomes cumbersome. Instead of computing distance (or similarity) matrices between documents from feature vectors, the present approach explores the possibility of inferring the distance between documents from the Q-analysis description. Q-analysis is a very natural notion of connectivity between the simplicies of the structure and in the relation studied, documents are connected to each other through shared sets of tags entered by the journalists. Also in this framework, eccentricity is defined as a measure of the relatedness of one simplex in relation to another [7].

David M.S. Rodrigues and Vitorino Ramos, “Traversing News with Ant Colony Optimisation and Negative Pheromones” [PDF], accepted as preprint for oral presentation at the European Conference on Complex SystemsECCS14 in Lucca, Sept. 22-26, 2014, Italy.

Abstract: The past decade has seen the rapid development of the online newsroom. News published online are the main outlet of news surpassing traditional printed newspapers. This poses challenges to the production and to the consumption of those news. With those many sources of information available it is important to find ways to cluster and organise the documents if one wants to understand this new system. Traditional approaches to the problem of clustering documents usually embed the documents in a suitable similarity space. Previous studies have reported on the impact of the similarity measures used for clustering of textual corpora [1]. These similarity measures usually are calculated for bag of words representations of the documents. This makes the final document-word matrix high dimensional. Feature vectors with more than 10,000 dimensions are common and algorithms have severe problems with the high dimensionality of the data. A novel bio inspired approach to the problem of traversing the news is presented. It finds Hamiltonian cycles over documents published by the newspaper The Guardian. A Second Order Swarm Intelligence algorithm based on Ant Colony Optimisation was developed [2, 3] that uses a negative pheromone to mark unrewarding paths with a “no-entry” signal. This approach follows recent findings of negative pheromone usage in real ants [4].

In this case study the corpus of data is represented as a bipartite relation between documents and keywords entered by the journalists to characterise the news. A new similarity measure between documents is presented based on the Q-analysis description [5, 6, 7] of the simplicial complex formed between documents and keywords. The eccentricity between documents (two simplicies) is then used as a novel measure of similarity between documents. The results prove that the Second Order Swarm Intelligence algorithm performs better in benchmark problems of the travelling salesman problem, with faster convergence and optimal results. The addition of the negative pheromone as a non-entry signal improves the quality of the results. The application of the algorithm to the corpus of news of The Guardian creates a coherent navigation system among the news. This allows the users to navigate the news published during a certain period of time in a semantic sequence instead of a time sequence. This work as broader application as it can be applied to many cases where the data is mapped to bipartite relations (e.g. protein expressions in cells, sentiment analysis, brand awareness in social media, routing problems), as it highlights the connectivity of the underlying complex system.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Hamiltonian cycles, Text Mining, Textual Corpora, Information Retrieval, Knowledge Discovery, Sentiment Analysis, Q-Analysis, Data Mining, Journalism, The Guardian.

References:

[1] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures on web-page clustering.  In Workshop on Artifcial Intelligence for Web Search (AAAI 2000), pages 58-64, 2000.
[2] David M. S. Rodrigues, Jorge Louçã, and Vitorino Ramos. From standard to second-order Swarm Intelligence  phase-space maps. In Stefan Thurner, editor, 8th European Conference on Complex Systems, Vienna, Austria,  9 2011.
[3] Vitorino Ramos, David M. S. Rodrigues, and Jorge Louçã. Second order Swarm Intelligence. In Jeng-Shyang  Pan, Marios M. Polycarpou, Micha l Wozniak, André C.P.L.F. Carvalho, Hector Quintian, and Emilio Corchado,  editors, HAIS’13. 8th International Conference on Hybrid Artificial Intelligence Systems, volume 8073 of Lecture  Notes in Computer Science, pages 411-420. Springer Berlin Heidelberg, Salamanca, Spain, 9 2013.
[4] Elva J.H. Robinson, Duncan Jackson, Mike Holcombe, and Francis L.W. Ratnieks. No entry signal in ant  foraging (hymenoptera: Formicidae): new insights from an agent-based model. Myrmecological News, 10(120), 2007.
[5] Ronald Harry Atkin. Mathematical Structure in Human A ffairs. Heinemann Educational Publishers, 48 Charles  Street, London, 1 edition, 1974.
[6] J. H. Johnson. A survey of Q-analysis, part 1: The past and present. In Proceedings of the Seminar on Q-analysis  and the Social Sciences, Universty of Leeds, 9 1983.
[7] David M. S. Rodrigues. Identifying news clusters using Q-analysis and modularity. In Albert Diaz-Guilera,  Alex Arenas, and Alvaro Corral, editors, Proceedings of the European Conference on Complex Systems 2013, Barcelona, 9 2013.

In order to solve hard combinatorial optimization problems (e.g. optimally scheduling students and teachers along a week plan on several different classes and classrooms), one way is to computationally mimic how ants forage the vicinity of their habitats searching for food. On a myriad of endless possibilities to find the optimal route (minimizing the travel distance), ants, collectively emerge the solution by using stigmergic signal traces, or pheromones, which also dynamically change under evaporation.

Current algorithms, however, make only use of a positive feedback type of pheromone along their search, that is, if they collectively visit a good low-distance route (a minimal pseudo-solution to the problem) they tend to reinforce that signal, for their colleagues. Nothing wrong with that, on the contrary, but no one knows however if a lower-distance alternative route is there also, just at the corner. On his global search endeavour, like a snowballing effect, positive feedbacks tend up to give credit to the exploitation of solutions but not on the – also useful – exploration side. The upcoming potential solutions can thus get crystallized, and freeze, while a small change on some parts of the whole route, could on the other-hand successfully increase the global result.

Influence of Negative Pheromone in Swarm IntelligenceFigure – Influence of negative pheromone on kroA100.tsp problem (fig.1 – page 6) (values on lines represent 1-ALPHA). A typical standard ACS (Ant Colony System) is represented here by the line with value 0.0, while better results could be found by our approach, when using positive feedbacks (0.95) along with negative feedbacks (0.05). Not only we obtain better results, as we found them earlier.

There is, however, an advantage when a second type of pheromone (a negative feedback one) co-evolves with the first type. And we decided to research for his impact. What we found out, is that by using a second type of global feedback, we can indeed increase a faster search while achieving better results. In a way, it’s like using two different types of evaporative traffic lights, in green and red, co-evolving together. And as a conclusion, we should indeed use a negative no-entry signal pheromone. In small amounts (0.05), but use it. Not only this prevents the whole system to freeze on some solutions, to soon, as it enhances a better compromise on the search space of potential routes. The pre-print article is available here at arXiv. Follows the abstract and keywords:

Vitorino Ramos, David M. S. Rodrigues, Jorge Louçã, “Second Order Swarm Intelligence” [PDF], in Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, Springer-Verlag, Volume 8073, pp. 411-420, 2013.

Abstract: An artificial Ant Colony System (ACS) algorithm to solve general purpose combinatorial Optimization Problems (COP) that extends previous AC models [21] by the inclusion of a negative pheromone, is here described. Several Travelling Salesman Problem‘s (TSP) were used as benchmark. We show that by using two different sets of pheromones, a second-order co-evolved compromise between positive and negative feedbacks achieves better results than single positive feedback systems. The algorithm was tested against known NP complete combinatorial Optimization Problems, running on symmetrical TSPs. We show that the new algorithm compares favourably against these benchmarks, accordingly to recent biological findings by Robinson [26,27], and Grüter [28] where “No entry” signals and negative feedback allows a colony to quickly reallocate the majority of its foragers to superior food patches. This is the first time an extended ACS algorithm is implemented with these successful characteristics.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Symmetrical Travelling Salesman Problems (TSP).

Saramago Caos quote - Lisbon, Vitorino Ramos 2013Photo – “O caos é uma ordem por decifrar” (Portuguese), that is… “Chaos is an order yet to be deciphered“, a quote from the Nobel Prize in Literature (1998) José Saramago [Lisbon, V. Ramos, 2013].

In 1990 (*), on one of his now famous works, Christopher Langton (link) decided to ask an important question. In order for computation to emerge spontaneously and become an important factor in the dynamics of a system, the material substrate must support the primitive functions required for computation: the transmission, storage, and modification of information. He then asked: Under what conditions might we expect physical systems to support such computational primitives?

Naturally, the question is difficult to address directly. Instead, he decided to reformulate the question in the context of a class of formal abstractions of physical systems: cellular automata (CAs). First, he introduce cellular automata and a simple scheme for parametrising (lambda parameter, λ) the space of all possible CA rules. Then he applied this parametrisation scheme to the space of possible one-dimensional CAs in a qualitative survey of the different dynamical regimes existing in CA rule space and their relationship to one another.

By presenting a quantitative picture of these structural relationships, using data from an extensive survey of two-dimensional CAs, he finally review the observed relationships among dynamical regimes, discussing their implications for the more general question raised above.  Langton found out that for a 2-state, 1-r neighbourhood, 1D cellular automata the optimal λ value is close to 0.5. For a 2-state, Moore neighbourhood, 2D cellular automata, like Conway’s Life, the λ value is then 0.273.

We then find that by selecting an appropriate parametrisation of the space of CAs, one observes a phase transition between highly ordered and highly disordered dynamics, analogous to the phase transition between the solid and fluid states of matter. Furthermore, Langton observed that CAs exhibiting the most complex behaviour – both qualitatively and quantitatively- are found generically in the vicinity of this phase transition. Most importantly, he observed that CAs in the transition region have the greatest potential for the support of information storage, transmission, and modification, and therefore for the emergence of computation. He concludes:

(…) These observations suggest that  there is  a fundamental connection between phase transitions and computation, leading to the following hypothesis concerning the emergence of computation in  physical systems: Computation may emerge spontaneously and come to dominate the dynamics of physical systems when those systems are at or near a transition between their solid and fluid phases, especially in the vicinity of a second-order or “critical” transition. (…)

Moreover, we observe surprising similarities between the behaviours of computations and systems near phase transitions, finding analogs of computational complexity classes and the halting problem (Turing) within the phenomenology of phase transitions. Langton, concludes that there is a fundamental connection between computation and phase transitions, especially second-order or “critical” transitions, discussing some of the implications for our understanding of nature if such a connection is borne out.

The full paper (*), Christopher G. Langton. “Computation at the edge of chaos”. Physica D, 42, 1990, is available online, here [PDF].

von Neumann

There is thus this completely decisive property of complexity, that there exists a critical size below which the process of synthesis is degenerative, but above which the phenomenon of synthesis, if properly arranged, can become explosive, in other words, where syntheses of automata can proceed in such a manner that each automaton will produce other automata which are more complex and of higher potentialities than itself“. ~ John von Neumann, in his 1949 University of Illinois lectures on the Theory and Organization of Complicated Automata [J. von Neumann, Theory of self-reproducing automata, 1949 Univ. of Illinois Lectures on the Theory and Organization of Complicated Automata, ed. A.W. Burks (University of Illinois Press, Urbana, IL, 1966).].

Hybrid Artificial Intelligent Systems HAIS 2013 (pp. 411-420 Second Order Swarm Intelligence)Figure – Hybrid Artificial Intelligent Systems new LNAI (Lecture Notes on Artificial Intelligence) series volume 8073, Springer-Verlag Book [original photo by my colleague David M.S. Rodrigues].

New work, new book. Last week one of our latest works come out published on Springer. Edited by Jeng-Shyang Pan, Marios M. Polycarpou, Emilio Corchado et al. “Hybrid Artificial Intelligent Systems” comprises a full set of new papers on this hybrid area on Intelligent Computing (check the full articles list at Springer). Our new paper “Second Order Swarm Intelligence” (pp. 411-420, Springer books link) was published on the Bio-inspired Models and Evolutionary Computation section.

The Hacker and the Ants is a work of science fiction by Rudy Rucker published in 1994 by Avon Books. It was written while Rucker was working as a programmer at Autodesk, Inc., of Sausalito, California from 1988 to 1992. The main character is a transrealist interpretation of Rucker’s life in the 1970s (Rucker taught mathematics at the State University College at Geneseo, New York from 1972 to 1978. from Wikipedia). The plot follows:

(…) Jerzy Rugby is trying to create truly intelligent robots. While his actual life crumbles, Rugby toils in his virtual office, testing the robots online. Then, something goes wrong and zillions of computer virus ants invade the net. Rugby is the man wanted for the crime. He’s been set up to take a fall for a giant cyberconspiracy and he needs to figure out who — or what — is sabotaging the system in order to clear his name. Plunging deep into the virtual worlds of Antland of Fnoor to find some answers, Rugby confronts both electronic and all-too-real perils, facing death itself in a battle for his freedom. (…)

Samuel Beckett

Interesting how this Samuel Beckett (1906–1989) quote to his work is so close to the research on Artificial Life (aLife), as well as how Christopher Langton (link) approached the field, on his initial stages, fighting back and fourth with his Lambda parameter (“Life emerges at the Edge of Chaos“) back in the 80’s. According to Langton‘s findings, at the edge of several ordered states and the chaotic regime (lambda=0,273) the information passing on the system is maximal, thus ensuring life. Will not wait for Godot. Here:

“Beckett was intrigued by chess because of the way it combined the free play of imagination with a rigid set of rules, presenting what the editors of the Faber Companion to Samuel Beckett call a “paradox of freedom and restriction”. That is a very Beckettian notion: the idea that we are simultaneously free and unfree, capable of beauty yet doomed. Chess, especially in the endgame when the board’s opening symmetry has been wrecked and the courtiers eliminated, represents life reduced to essentials – to a struggle to survive.”(*)

(*) on Stephen Moss, “Samuel Beckett’s obsession with chess: how the game influenced his work“, The Guardian, 29 August 2013. [link]

Four different snapshots (click to enlarge) from one of my latest books, recently published in Japan: Ajith Abraham, Crina Grosan, Vitorino Ramos (Eds.), “Swarm Intelligence in Data Mining” (群知能と  データマイニング), Tokyo Denki University press [TDU], Tokyo, Japan, July 2012.

Fig.1 – (click to enlarge) The optimal shortest path among N=1265 points depicting a Portuguese Navalheira crab as a result of one of our latest Swarm-Intelligence based algorithms. The problem of finding the shortest path among N different points in space is NP-hard, known as the Travelling Salesmen Problem (TSP), being one of the major and hardest benchmarks in Combinatorial Optimization (link) and Artificial Intelligence. (V. Ramos, D. Rodrigues, 2012)

This summer my kids just grab a tiny Portuguese Navalheira crab on the shore. After a small photo-session and some baby-sitting with a lettuce leaf, it was time to release it again into the ocean. He not only survived my kids, as he is now entitled into a new World Wide Web on-line life. After the Shortest path Sardine (link) with 1084 points, here is the Crab with 1265 points. The algorithm just run as little as 110 iterations.

Fig. 2 – (click to enlarge) Our 1265 initial points depicting a TSP Portuguese Navalheira crab. Could you already envision a minimal tour between all these points?

As usual in Travelling Salesmen problems (TSP) we start it with a set of points, in our case 1084 points or cities (fig. 2). Given a list of cities and their pairwise distances, the task is now to find the shortest possible tour that visits each city exactly once. The problem was first formulated as a mathematical problem in 1930 and is one of the most intensively studied problems in optimization. It is used as a benchmark for many optimization methods.

Fig. 3 – (click to enlarge) Again the shortest path Navalheira crab, where the optimal contour path (in black: first fig. above) with 1265 points (or cities) was filled in dark orange.

TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these applications, the concept city represents, for example, customers, soldering points, or DNA fragments, and the concept distance represents travelling times or cost, or a similarity measure between DNA fragments. In many applications, additional constraints such as limited resources or time windows make the problem considerably harder.

What follows (fig. 4) is the original crab photo after image segmentation and just before adding Gaussian noise in order to retrieve several data points for the initial TSP problem. The algorithm was then embedded with the extracted x,y coordinates of these data points (fig. 2) in order for him to discover the minimal path, in just 110 iterations. For extra details, pay a visit onto the Shortest path Sardine (link) done earlier.

Fig. 4 – (click to enlarge) The original crab photo after some image processing as well as segmentation and just before adding Gaussian noise in order to retrieve several data points for the initial TSP problem.

Figure – A classic example of emergence: The exact shape of a termite mound is not reducible to the actions of individual termites. Even if, there are already computer models who could achieve it (Check for more on “Stigmergic construction” or the full current blog Stigmergy tag)

The world can no longer be understood like a chessboard… It’s a Jackson Pollack painting” ~ Carne Ross, 2012.

[…] As pointed by Langton, there is more to life than mechanics – there is also dynamics. Life depends critically on principles of dynamical self-organization that have remained largely untouched by traditional analytic methods. There is a simple explanation for this – these self-organized dynamics are fundamentally non-linear phenomena, and non-linear phenomena in general depend critically on the interactions between parts: they necessarily disappear when parts are treated in isolation from one another, which is the basis for any analytic method. Rather, non-linear phenomena are most appropriately treated by a synthetic approach, where synthesis means “the combining of separate elements or substances to form a coherent whole”. In non-linear systems, the parts must be treated in each other’s presence, rather than independently from one another, because they behave very differently in each other’s presence than we would expect from a study of the parts in isolation. […] in Vitorino Ramos, 2002, http://arxiv.org/abs/cs /0412077.

What follows are passages from an important article on the consequences for Science at the moment of the recent discovery of the Higgs boson. Written by Ashutosh Jogalekar, “The Higgs boson and the future of science” (link) the article appeared at the Scientific American blog section (July 2012). And it starts discussing reductionism or how the Higgs boson points us to the culmination of reductionist thinking:

[…] And I say this with a suspicion that the Higgs boson may be the most fitting tribute to the limitations of what has been the most potent philosophical instrument of scientific discovery – reductionism. […]

[…] Yet as we enter the second decade of the twenty-first century, it is clear that reductionism as a principal weapon in our arsenal of discovery tools is no longer sufficient. Consider some of the most important questions facing modern science, almost all of which deal with complex, multi factorial systems. How did life on earth begin? How does biological matter evolve consciousness? What are dark matter and dark energy? How do societies cooperate to solve their most pressing problems? What are the properties of the global climate system? It is interesting to note at least one common feature among many of these problems; they result from the build-up rather than the breakdown of their operational entities. Their signature is collective emergence, the creation of attributes which are greater than the sum of their constituent parts. Whatever consciousness is for instance, it is definitely a result of neurons acting together in ways that are not obvious from their individual structures. Similarly, the origin of life can be traced back to molecular entities undergoing self-assembly and then replication and metabolism, a process that supersedes the chemical behaviour of the isolated components. The puzzle of dark matter and dark energy also have as their salient feature the behaviour of matter at large length and time scales. Studying cooperation in societies essentially involves studying group dynamics and evolutionary conflict. The key processes that operate in the existence of all these problems seem to almost intuitively involve the opposite of reduction; they all result from the agglomeration of molecules, matter, cells, bodies and human beings across a hierarchy of unique levels. In addition, and this is key, they involve the manifestation of unique principles emerging at every level that cannot be merely reduced to those at the underlying level. […]

[…] While emergence had been implicitly appreciated by scientists for a long time, its modern salvo was undoubtedly a 1972 paper in Science by the Nobel Prize winning physicist Philip Anderson (link) titled “More is Different” (PDF), a title that has turned into a kind of clarion call for emergence enthusiasts. In his paper Anderson (who incidentally first came up with the so-called Higgs mechanism) argued that emergence was nothing exotic; for instance, a lump of salt has properties very different from those of its highly reactive components sodium and chlorine. A lump of gold evidences properties like color that don’t exist at the level of individual atoms. Anderson also appealed to the process of broken symmetry, invoked in all kinds of fundamental events – including the existence of the Higgs boson – as being instrumental for emergence. Since then, emergent phenomena have been invoked in hundreds of diverse cases, ranging from the construction of termite hills to the flight of birds. The development of chaos theory beginning in the 60s further illustrated how very simple systems could give rise to very complicated and counter-intuitive patterns and behaviour that are not obvious from the identities of the individual components. […]

[…] Many scientists and philosophers have contributed to considered critiques of reductionism and an appreciation of emergence since Anderson wrote his paper. (…) These thinkers make the point that not only does reductionism fail in practice (because of the sheer complexity of the systems it purports to explain), but it also fails in principle on a deeper level. […]

[…] An even more forceful proponent of this contingency-based critique of reductionism is the complexity theorist Stuart Kauffman who has laid out his thoughts in two books. Just like Anderson, Kauffman does not deny the great value of reductionism in illuminating our world, but he also points out the factors that greatly limit its application. One of his favourite examples is the role of contingency in evolution and the object of his attention is the mammalian heart. Kauffman makes the case that no amount of reductionist analysis could explain tell you that the main function of the heart is to pump blood. Even in the unlikely case that you could predict the structure of hearts and the bodies that house them starting from the Higgs boson, such a deductive process could never tell you that of all the possible functions of the heart, the most important one is to pump blood. This is because the blood-pumping action of the heart is as much a result of historical contingency and the countless chance events that led to the evolution of the biosphere as it is of its bottom-up construction from atoms, molecules, cells and tissues. […]

[…] Reductionism then falls woefully short when trying to explain two things; origins and purpose. And one can see that if it has problems even when dealing with left-handed amino acids and human hearts, it would be in much more dire straits when attempting to account for say kin selection or geopolitical conflict. The fact is that each of these phenomena are better explained by fundamental principles operating at their own levels. […]

[…] Every time the end of science has been announced, science itself proved that claims of its demise were vastly exaggerated. Firstly, reductionism will always be alive and kicking since the general approach of studying anything by breaking it down into its constituents will continue to be enormously fruitful. But more importantly, it’s not so much the end of reductionism as the beginning of a more general paradigm that combines reductionism with new ways of thinking. The limitations of reductionism should be seen as a cause not for despair but for celebration since it means that we are now entering new, uncharted territory. […]

Figure (click to enlarge) – Cover from one of my books published last month (10 July 2012) “Swarm Intelligence in Data Mining” recently translated and edited in Japan (by Tokyo Denki University press [TDU]). Cover image from Amazon.co.jp (url). Title was translated into 群知能と  データマイニング. Funny also, to see my own name for the first time translated into Japanese – wonder if it’s Kanji. A brief synopsis follow:

(…) Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration from the biological examples by swarming, flocking and herding phenomena in vertebrates. Particle Swarm Optimization (PSO) incorporates swarming behaviours observed in flocks of birds, schools of fish, or swarms of bees, and even human social behaviour, from which the idea is emerged. Ant Colony Optimization (ACO) deals with artificial systems that is inspired from the foraging behaviour of real ants, which are used to solve discrete optimization problems. Historically the notion of finding useful patterns in data has been given a variety of names including data mining, knowledge discovery, information extraction, etc. Data Mining is an analytic process designed to explore large amounts of data in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data. In order to achieve this, data mining uses computational techniques from statistics, machine learning and pattern recognition. Data mining and Swarm intelligence may seem that they do not have many properties in common. However, recent studies suggests that they can be used together for several real world data mining problems especially when other methods would be too expensive or difficult to implement. This book deals with the application of swarm intelligence methodologies in data mining. Addressing the various issues of swarm intelligence and data mining using different intelligent approaches is the novelty of this edited volume. This volume comprises of 11 chapters including an introductory chapters giving the fundamental definitions and some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed. (…) (more)

Video – TED lecture: Empathy, cooperation, fairness and reciprocity – caring about the well-being of others seems like a very human trait. But Frans de Waal shares some surprising videos of behavioural tests, on primates and other mammals, that show how many of these moral traits all of us share. (TED, Nov. 2011, link).

Evolutionary explanations are built around the principle that all that natural selection can work with are the effects of behaviour – not the motivation behind it. This means there is only one logical starting point for evolutionary accounts, as explained by Trivers (2002, p. 6): “You begin with the effect of behaviour on actors and recipients; you deal with the problem of internal motivation, which is a secondary problem, afterwards. . . . [I]f you start with motivation, you have given up the evolutionary analysis at the outset.” ~ Frans B.M. de Waal, 2008.

Do animals have morals? And above all, did morality evolved? The question is pertinent in a broad range of quite different areas, as in as well Computer Sciences and Norm Generation (e.g. link for an MSc thesis) in bio-inspired Computation and Artificial Life, but here new fresh answers come directly from Biology. Besides the striking video lecture above, what follows are 2 different excerpts (abstract and conclusions) from a 2008 paper by Frans B.M. de Waal (Living Links Center lab., Emory University, link): de Waal, F.B.M. (2008). Putting the altruism back in altruism: The evolution of empathy. Ann. Rev. Psychol. 59: 279-300 (full PDF link):

(…) Abstract: Evolutionary theory postulates that altruistic behaviour evolved for the return-benefits it bears the performer. For return-benefits to play a motivational role, however, they need to be experienced by the organism. Motivational analyses should restrict themselves, therefore, to the altruistic impulse and its knowable consequences. Empathy is an ideal candidate mechanism to underlie so-called directed altruism, i.e., altruism in response to another’s pain, need, or distress. Evidence is accumulating that this mechanism is phylogenetically ancient, probably as old as mammals and birds. Perception of the emotional state of another automatically activates shared representations causing a matching emotional state in the observer.With increasing cognition, state-matching evolved into more complex forms, including concern for the other and perspective-taking. Empathy-induced altruism derives its strength from the emotional stake it offers the self in the other’s welfare. The dynamics of the empathy mechanism agree with predictions from kin selection and reciprocal altruism theory. (…)

(…) Conclusion: More than three decades ago, biologists deliberately removed the altruism from altruism.There is now increasing evidence that the brain is hardwired for social connection, and that the same empathy mechanism proposed to underlie human altruism (Batson 1991) may underlie the directed altruism of other animals. Empathy could well provide the main motivation making individuals who have exchanged benefits in the past to continue doing so in the future. Instead of assuming learned expectations or calculations about future benefits, this approach emphasizes a spontaneous altruistic impulse and a mediating role of the emotions. It is summarized in the five conclusions below: 1. An evolutionarily parsimonious account (cf. de Waal 1999) of directed altruism assumes similar motivational processes in humans and other animals. 2. Empathy, broadly defined, is a phylogenetically ancient capacity. 3. Without the emotional engagement brought about by empathy, it is unclear what could motivate the extremely costly helping behavior occasionally observed in social animals. 4. Consistent with kin selection and reciprocal altruism theory, empathy favours familiar individuals and previous cooperators, and is biased against previous defectors. 5. Combined with perspective-taking abilities, empathy’s motivational autonomy opens the door to intentionally altruistic altruism in a few large-brained species.(…) in, de Waal, F.B.M. (2008). Putting the altruism back in altruism: The evolution of empathy. Ann. Rev. Psychol. 59: 279-300 (full PDF link).

Frans de Waal research work does not end up here, of course. He is a ubiquitous influence and writer on many related areas such as: Cognition, Communication, Crowding/Conflict Resolution, Empathy and Altruism, Social Learning and Culture, Sharing and Cooperation and last but not least, Behavioural Economics. All of his papers are free on-line, in a web page I do vividly recommend a long visit.

Complex adaptive systems (CAS), including ecosystems, governments, biological cells, and markets, are characterized by intricate hierarchical arrangements of boundaries and signals. In ecosystems, for example, niches act as semi-permeable boundaries, and smells and visual patterns serve as signals; governments have departmental hierarchies with memoranda acting as signals; and so it is with other CAS. Despite a wealth of data and descriptions concerning different CAS, there remain many unanswered questions about “steering” these systems. In Signals and Boundaries, John Holland (Wikipedia entry) argues that understanding the origin of the intricate signal/border hierarchies of these systems is the key to answering such questions. He develops an overarching framework for comparing and steering CAS through the mechanisms that generate their signal/boundary hierarchies. Holland lays out a path for developing the framework that emphasizes agents, niches, theory, and mathematical models. He discusses, among other topics, theory construction; signal-processing agents; networks as representations of signal/boundary interaction; adaptation; recombination and reproduction; the use of tagged urn models (adapted from elementary probability theory) to represent boundary hierarchies; finitely generated systems as a way to tie the models examined into a single framework; the framework itself, illustrated by a simple finitely generated version of the development of a multi-celled organism; and Markov processes.

in, Introduction to John H. Holland, “Signals and Boundaries – Building blocks for Complex Adaptive Systems“, Cambridge, Mass. : ©MIT Press, 2012.

Video – Animaris Gubernare (AG), is one of the most recent Theo Jansen’s Strandbeest‘s (strandbeest.com) machine animals. Born in October 2010, AG died out in October 2011. It had two external (rolling) wind stomachs which serve as an anchor against strong winds.

Since 1990, only by using plastic tubes, lemonade bottles and air pistons as logic gates, powered by wind, Theo Jansen has produced some quite incredible machine animals. His creatures are designed to move – and even survive – on their own. In some cases he have recurred to Evolutionary Computation (more) as a mean to optimize their shape in order to longer survive hard storms and salt water. He briefly explains:

“(…) Since 1990 I have been occupied creating new forms of life. Not pollen or seeds but plastic yellow tubes are used as the basic material of this new nature. I make skeletons that are able to walk on the wind, so they don’t have to eat. Over time, these skeletons have become increasingly better at surviving the elements such as storm and water and eventually I want to put these animals out in herds on the beaches, so they will live their own lives (…)”, Theo Jansen, in Strandbeest (strandbeest.com).

But he goes a step further. Not he only develop sensors (for water sensing) as well as a full Brain, a binary step counter made of plastic tubes, which could change his pattern of zeroes, overtime, and adapts. Have a look (minute 6, second 33) … :

Video – Jansen‘s Lecture at TED talks, March 2007 (Monterey, California). Theo Jansen creates kinetic sculptures that walk using wind power (featured in a few previous short sifts), here he explains how he makes them work. Incredibly, he has devised a way to optimize the shape of the machine’s parts and gait using a genetic algorithm running on a PC and has actually made logic gates out of the air pistons making up the machines. His work attests to a truly jaw-dropping intelligence.

Video – Water has Memory (from Oasis HD, Canada; link): just a liquid or much more? Many researchers are convinced that water is capable of “memory” by storing information and retrieving it. The possible applications are innumerable: limitless retention and storage capacity and the key to discovering the origins of life on our planet. Research into water is just beginning.

Water capable of processing information as well as a huge possible “container” for data media, that is something remarkable. This theory was first proposed by the late French immunologist Jacques Benveniste, in a controversial article published in 1988 in Nature, as a way of explaining how homeopathy works (link). Benveniste’s theory has continued to be championed by some and disputed by others. The video clip above, from the Oasis HD Channel, shows some fascinating recent experiments with water “memory” from the Aerospace Institute of the University of Stuttgart in Germany. The results with the different types of flowers immersed in water are particularly evocative.

This line of research also remembers me back of an old and quite interesting paper by a colleague, Chrisantha Fernando. Together with Sampsa Sojakka, both have proved that waves produced on the surface of water can be used as the medium for a Wolfgang Maass’ “Liquid State Machine” (link) that pre-processes inputs so allowing a simple perceptron to solve the XOR problem and undertake speech recognition. Amazingly, Water achieves this “for free”, and does so without the time-consuming computation required by realistic neural models. What follows is the abstract of their paper entitled “Pattern Recognition in a Bucket“, as well a PDF link onto it:

Figure – Typical wave patterns for the XOR task. Top-Left: [0 1] (right motor on), Top-Right: [1 0] (left motor on), Bottom-Left: [1 1] (both motors on), Bottom-Right: [0 0] (still water). Sobel filtered and thresholded images on right. (from Fig. 3. in in Chrisantha Fernando and Sampsa Sojakka, “Pattern Recognition in a Bucket“, ECAL proc., European Conference on Artificial Life, 2003.

[…] Abstract. This paper demonstrates that the waves produced on the surface of water can be used as the medium for a “Liquid State Machine” that pre-processes inputs so allowing a simple perceptron to solve the XOR problem and undertake speech recognition. Interference between waves allows non-linear parallel computation upon simultaneous sensory inputs. Temporal patterns of stimulation are converted to spatial patterns of water waves upon which a linear discrimination can be made. Whereas Wolfgang Maass’ Liquid State Machine requires fine tuning of the spiking neural network parameters, water has inherent self-organising properties such as strong local interactions, time-dependent spread of activation to distant areas, inherent stability to a wide variety of inputs, and high complexity. Water achieves this “for free”, and does so without the time-consuming computation required by realistic neural models. An analogy is made between water molecules and neurons in a recurrent neural network. […] in Chrisantha Fernando and Sampsa Sojakka, Pattern Recognition in a Bucket“, ECAL proc., European Conference on Artificial Life, 2003. [PDF link]

 

The above artificial ecosystem investigates the characteristics of the simulated environment through the use of agents reactive to pheromone trails. Pheromones spread through the fluid and are transported by it. The configuration of the reefs will be developed therefore in areas with less chance of stagnation of pheromones (done in Processing, from Alessandro Zomparelli, 2012).

[…] In conclusion, much elegant work has been done starting from activated mono-nucleotides. However, the prebiotic synthesis of a specific macromolecular sequence does not seem to be at hand, giving us the same problem we have with polypeptide sequences. Since there is no ascertained prebiotic pathway to their synthesis, it may be useful to try to conceive some working hypothesis. In order to do that, I would first like to consider a preliminary question about the proteins we have on our Earth: “Why these proteins … and not other ones?”. Discussing this question can in fact give us some clue as to how orderly sequences might have originated. […] A grain of sand in the Sahara – This is indeed a central question in our world of proteins. How have they been selected out? There is a well-known arithmetic at the basis of this question, (see for example De Duve, 2002) which says that for a polypeptide chain with 100 residues, 20^100 different chains are in principle possible: a number so large that it does not convey any physical meaning. In order to grasp it somewhat, consider that the proteins existing on our planet are of the order of a few thousand billions, let us say around 10^13 (and with all isomers and mutations we may arrive at a few orders of magnitude more). This sounds like a large number. However, the ratio between the possible (say 20^100) and the actual chains (say 10^15) corresponds approximately to the ratio between the radius of the universe and the radius of a hydrogen atom! Or, to use another analogy, nearer to our experience, a ratio many orders of magnitude greater than the ratio between all the grains of sand in the vast Sahara and a single grain. The space outside “our atom”, or our grain of sand, is the space of the “never-born proteins”, the proteins that are not with us – either because they didn’t have the chance to be formed, or because they “came” and were then obliterated. This arithmetic, although trivial, bears an important message: in order to reproduce our proteins we would have to hit the target of that particular grain of sand in the whole Sahara. Christian De Duve, in order to avoid this “sequence paradox” (De Duve, 2002), assumes that all started with short polypeptides – and this is in fact reasonable. However, the theoretically possible total number of long chains does not change if you start with short peptides instead of amino acids. The only way to limit the final number of possible chains would be to assume, for example, that peptide synthesis started only under a particular set of conditions of composition and concentration, thus bringing contingency into the picture. As a corollary, then, this set of proteins born as a product of contingency would have been the one that happened to start life. Probably there is no way of eliminating contingency from the aetiology of our set of proteins. […]

Figure – The ratio between the theoretical number of possible proteins and their actual number is many orders of magnitude greater than the ratio between all sand of the vast Sahara and a single grain of sand (caption on page 69).

[…] The other objection to the numerical meaning suggested by Figure (above) is that the maximum number of proteins is much smaller because a great number of chain configurations are prohibited for energetic reasons. This is reasonable. Let us then assume that 99.9999% of theoretically possible protein chains cannot exist because of energy reasons. This would leave only one protein out of one million, reducing the number of never-born proteins from, say, 10^60 to 10^54. Not a big deal. Of course one could also assume that the total number of energetically allowed proteins is extremely small, no larger than, say, 10^10. This cannot be excluded a priori, but is tantamount to saying that there is something very special about “our” proteins, namely that they are energetically special. Whether or not this is so can be checked experimentally as will be seen later in a research project aimed at this target. The assumption that “our” proteins have something special from the energetic point of view, would correspond to a strict deterministic view that claims that the pathway leading to our proteins was determined, that there was no other possible route. Someone adhering strictly to a biochemical anthropic principle might even say that these proteins are the way they are in order to allow life and the development of mankind on Earth. The contingency view would recite instead the following: if our proteins or nucleic acids have no special properties from the point of view of thermodynamics, then run the tape again and a different “grain of sand” might be produced – one that perhaps would not have supported life. Some may say at this point that proteins derive in any case from nucleic-acid templates – perhaps through a primitive genetic code. However, this is really no argument – it merely shifts the problem of the etiology of peptide chains to etiology of oligonucleotide chains, all arithmetic problems remaining more or less the same. […] pp. 68-70, in Pier Luigi Luisi, “The Emergence of Life: From Chemical Origins to Synthetic Biology“, Cambridge University Press, US, 2006.

ECCS11 Spatio-Temporal Dynamics on Co-Evolved Stigmergy Vitorino Ramos David M.S. Rodrigues Jorge Louçã

Ever tried to solve a problem where its own problem statement is changing constantly? Have a look on our approach:

Vitorino Ramos, David M.S. Rodrigues, Jorge LouçãSpatio-Temporal Dynamics on Co-Evolved Stigmergy“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

Abstract: Research over hard NP-complete Combinatorial Optimization Problems (COP’s) has been focused in recent years, on several robust bio-inspired meta-heuristics, like those involving Evolutionary Computation (EC) algorithmic paradigms. One particularly successful well-know meta-heuristic approach is based on Swarm Intelligence (SI), i.e., the self-organized stigmergic-based property of a complex system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. This line of research recognized as Ant Colony Optimization (ACO), uses a set of stochastic cooperating ant-like agents to find good solutions, using self-organized stigmergy as an indirect form of communication mediated by artificial pheromone, whereas agents deposit pheromone-signs on the edges of the problem-related graph complex network, encompassing a family of successful algorithmic variations such as: Ant Systems (AS), Ant Colony Systems (ACS), Max-Min Ant Systems (MaxMin AS) and Ant-Q.

Albeit being extremely successful these algorithms mostly rely on positive feedback’s, causing excessive algorithmic exploitation over the entire combinatorial search space. This is particularly evident over well known benchmarks as the symmetrical Traveling Salesman Problem (TSP). Being these systems comprised of a large number of frequently similar components or events, the principal challenge is to understand how the components interact to produce a complex pattern feasible solution (in our case study, an optimal robust solution for hard NP-complete dynamic TSP-like combinatorial problems). A suitable approach is to first understand the role of two basic modes of interaction among the components of Self-Organizing (SO) Swarm-Intelligent-like systems: positive and negative feedback. While positive feedback promotes a snowballing auto-catalytic effect (e.g. trail pheromone upgrading over the network; exploitation of the search space), taking an initial change in a system and reinforcing that change in the same direction as the initial deviation (self-enhancement and amplification) allowing the entire colony to exploit some past and present solutions (environmental dynamic memory), negative feedback such as pheromone evaporation ensure that the overall learning system does not stables or freezes itself on a particular configuration (innovation; search space exploration). Although this kind of (global) delayed negative feedback is important (evaporation), for the many reasons given above, there is however strong assumptions that other negative feedbacks are present in nature, which could also play a role over increased convergence, namely implicit-like negative feedbacks. As in the case for positive feedbacks, there is no reason not to explore increasingly distributed and adaptive algorithmic variations where negative feedback is also imposed implicitly (not only explicitly) over each network edge, while the entire colony seeks for better answers in due time.

In order to overcome this hard search space exploitation-exploration compromise, our present algorithmic approach follows the route of very recent biological findings showing that forager ants lay attractive trail pheromones to guide nest mates to food, but where, the effectiveness of foraging networks were improved if pheromones could also be used to repel foragers from unrewarding routes. Increasing empirical evidences for such a negative trail pheromone exists, deployed by Pharaoh’s ants (Monomorium pharaonis) as a ‘no entry‘ signal to mark unrewarding foraging paths. The new algorithm comprises a second order approach to Swarm Intelligence, as pheromone-based no entry-signals cues, were introduced, co-evolving with the standard pheromone distributions (collective cognitive maps) in the aforementioned known algorithms.

To exhaustively test his adaptive response and robustness, we have recurred to different dynamic optimization problems. Medium-size and large-sized dynamic TSP problems were created. Settings and parameters such as, environmental upgrade frequencies, landscape changing or network topological speed severity, and type of dynamic were tested. Results prove that the present co-evolved two-type pheromone swarm intelligence algorithm is able to quickly track increasing swift changes on the dynamic TSP complex network, compared to standard algorithms.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Dynamical Symmetrical Traveling Salesman Problems (TSP).


Fig. – Recovery times over several dynamical stress tests at the fl1577 TSP problem (1577 node graph) – 460 iter max – Swift changes at every 150 iterations (20% = 314 nodes, 40% = 630 nodes, 60% = 946 nodes, 80% = 1260 nodes, 100% = 1576 nodes). [click to enlarge]

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Archives

Blog Stats

  • 245,137 hits