You are currently browsing the tag archive for the ‘Generative Art’ tag.

Portugal at World Expo 1998 by Vitorino Ramos

Images – Portugal (1A – top left, original input satellite image below), geodesically stretched by one of my Mathematical Morphology algorithms, in order to represent real travel times from each of the 18 regional districts in Portugal, to the rest of the territory.  From the 18, three capital districts are represented here. As departing from Lisbon (1B – top right), from Faro (1C – South of Portugal, bottom left), and from Bragança (1D – North-East region, bottom right). [World Exposition, Lisbon, Territory pavilion, 1998].

Recently one of my colleagues who knows I love maps, pointed me to an old TV show “Câmara Clara“, a cultural TV show by RTP2, at one of the main public Portuguese TV stations. Main reason for my interest was his current theme: Maps. My second reason was their guests: Joaquim Ferreira do Amaral (an ex-Minister with a passion for maps) and Manuel Lima, which wonderful work on information visualization I know for a long time (on one of my past posts I referred to one of his ongoing working sites: visualcomplexity).

For my complete and positive surprise, their interview ended with some new examples, being one of my old works referred (from 57m 12s up to 60m 26s on ). It’s a long story on how I ended doing these kind of maps. Part of it, it’s here. During 1998, the World Exposition was in Portugal, and I got invited to present a set of 18 different maps from the Portuguese territory. So I decided to geodesically stretch the travel distances from any of the 18 different capital districts, to the rest of the territory, in order to represent travel Time not Distance, or Distance as time. For that,  I have coded new algorithms based on Mathematical Morphology (MM), taking in account every road (from main roads to regional, check some images below), from which I applied different MM operators.

Unfortunately, many of those maps are now lost. I did tried hard to find them from my old digital archives, but only found those above, which represent the departure from Lisbon (the Capital), Faro and Bragança. So, if by any reason you happen to have some photos from the 1998’s World Exposition in Lisbon, inside the Territory pavilion, I would love to receive them.

Os Portugueses e a Arte dos Mapas - Câmara Clara 131 - Maio 10 2009Video (LINK) – “Câmara Clara” TV show by journalist Paula Moura Pinheiro dedicated to maps (nº 131), at one of the main public Portuguese TV stations (RTP2), broadcasted on May 3 2009, in Portuguese.

A sketchy summary of this TV program went on something like this (the poor translation is mine): At the year Google promises to launch his first and exhaustive world-wide open-access digital cartography of the African continent, Joaquim Ferreira do Amaral, passioned by the Portuguese World Discover History and collector of historical maps, joins as guest with Manuel Lima, the Portuguese information designer that recently Creativity magazine has considered one of the top bright minds along with Google and Amazon founders, debating the importance of “navigating” reality with a map. From the Portuguese cartographic history, know to be the best in the XV and XVI centuries, up to the actual state-of-the-art in this area, from which Manuel Lima is considered to be one of the top researchers at global scale.

Original + Layers Portugal at World Expo 1998 by Vitorino Ramos


Coders are now habitat providers for the rest of the world.” ~ Vitorino Ramos, via Twitter, July, 17, 2012 (link).

Video lecture – Casey Reas ( at Eyeo2012 (uploaded 2 days ago on Vimeo): From a visual and conceptual point of view, the tension between order and chaos is a fertile space to explore. For over one hundred years, visual artists have focused on both in isolation and in tandem. As artists started to use software in the 1960s, the nature of this exploration expanded. This presentation features a series of revealing examples, historical research into the topic as developed for Reas‘ upcoming co-authored book “10 PRINT CHR$(205.5+RND(1)); : GOTO 10″ (MIT Press, 2012, book link; cover above), and a selection of Casey‘s artwork that relies on the relationship between chance operations and strict rules.

Video – Animaris Gubernare (AG), is one of the most recent Theo Jansen’s Strandbeest‘s ( machine animals. Born in October 2010, AG died out in October 2011. It had two external (rolling) wind stomachs which serve as an anchor against strong winds.

Since 1990, only by using plastic tubes, lemonade bottles and air pistons as logic gates, powered by wind, Theo Jansen has produced some quite incredible machine animals. His creatures are designed to move – and even survive – on their own. In some cases he have recurred to Evolutionary Computation (more) as a mean to optimize their shape in order to longer survive hard storms and salt water. He briefly explains:

“(…) Since 1990 I have been occupied creating new forms of life. Not pollen or seeds but plastic yellow tubes are used as the basic material of this new nature. I make skeletons that are able to walk on the wind, so they don’t have to eat. Over time, these skeletons have become increasingly better at surviving the elements such as storm and water and eventually I want to put these animals out in herds on the beaches, so they will live their own lives (…)”, Theo Jansen, in Strandbeest (

But he goes a step further. Not he only develop sensors (for water sensing) as well as a full Brain, a binary step counter made of plastic tubes, which could change his pattern of zeroes, overtime, and adapts. Have a look (minute 6, second 33) … :

Video – Jansen‘s Lecture at TED talks, March 2007 (Monterey, California). Theo Jansen creates kinetic sculptures that walk using wind power (featured in a few previous short sifts), here he explains how he makes them work. Incredibly, he has devised a way to optimize the shape of the machine’s parts and gait using a genetic algorithm running on a PC and has actually made logic gates out of the air pistons making up the machines. His work attests to a truly jaw-dropping intelligence.

(…) The Four Mists of Chaos, the North, the East, the West, and the South, went to visit Chaos himself. He treated them all very kindly and when they were thinking of leaving, they consulted among themselves how they might repay his hospitality. Since they had noticed that he had no holes in his body, as they each had (eyes, nose, mouth, ears, etc.), they decided each day to provide him with an opening. At the end of seven days, Kwang-tse tells us, Chaos died. (…)  in Indeterminacy – Ninety Stories by John Cage (Transcript of story number 27), With Music, ca. 26’00” to 27’00”, From John Cage’s [1958] Lecture ‘Indeterminacy’, 26’00” to 27’00”, in Die Reihe No. 5, English edition on p.120.

[…] Swing music, also known as swing jazz or simply swing, is a form of jazz music that developed in the early 1930s and became a distinctive style by 1935 in the United States. Swing uses a strong rhythm section of double bass and drums as the anchor for a lead section of brass instruments such as trumpets and trombones, woodwinds including saxophones and clarinets, and sometimes stringed instruments such as violin and guitar, medium to fast tempos, and a “lilting” swing time rhythm. The name swing came from the phrase ‘swing feelwhere the emphasis is on the off-beat or weaker pulse in the music (unlike classic music). Swing bands usually featured soloists who would improvise on the melody over the arrangement. The danceable swing style of bandleaders such as Benny Goodman and Count Basie was the dominant form of American popular music from 1935 to 1945. The verb “to swing” is also used as a term of praise for playing that has a strong rhythmic “groove” or drive. […] from Wikipedia (link).

nota bene – tomorrow is Jazz day, isn’t it?!

[…] >Chomsky says humans can make more output than they take in as input. There’s a gap he calls creativity […]

Language is meaningless, thought is pointless, and we’re all gonna die. Hello, hi there!” […] New York director Annie Dorsen takes the famous television debate between the philosopher Michel Foucault and linguist and activist Noam Chomsky from the Seventies as inspiration and material for a dialogue between two specially developed chatbots: every evening, these computer programs designed to mimic human conversations perform a new – as it were, improvised – live text. “Hello Hi There” is a performance without people – a literal expression of post-humanism, and simultaneously an examination of what it means to be human. The piece goes inside the question of human nature and intelligence, both the organic and the artificial […] (from Annie Dorsen “Hello Hi There“, PS122, New York, NY, Jan. 2011)

(video) An excerpt from the Chomsky-Foucault debate which was aired on Dutch television in 1971. For more check, Noam Chomsky and Michel Foucault, “The Chomsky-Foucault Debate: On Human Nature” (New York: The New Press, 2006). [a full transcript is available here].

… fortunately for all of us.

The three stages of response to a new idea: 1. Ridicule 2. Outrage 3. Declaration that it’s obvious” ~ Arthur Schopenhauer.

[…] However, Cage himself never softened. The culture might have moved on, but he kept on his radical edge, continuing his revolution in a quiet way for those who cared not only to listen, but to act on and live by his words. Through the 1980’s, Cage’s influence was felt in the underground, influencing many of the more interesting cultural movements of that decade–the birth of indy rock, the renewal of Conceptual Art, and the rise of Language Poetry. Many of these artists studied Cage in the ’60s and ’70s and went on to synthesize newer aesthetic/cultural concerns with older Cageian ideals. While the 80’s played out in the media with Wall Street Yuppies and decadent consumerists grabbing the spotlight, many of us spent time on the edge of the culture, which in turn planted the seeds for the more politically charged times in which we now live. […] The final essay here is “Poethics of a Complex Realism” by Joan Retallack and note the word realism in the title. Retallack begins her essay with an invocation of American Pragmatist John Dewey’s “Art As Experience” and launches into a long discussion of the idea of weather as it relates to the ideas of John Cage. Cage said that he wanted his music to be like the weather–unpredictable, omnidirectional, impermanent, and always changing–complex systems that parallel the conditions of our daily life. He did several works involving the weather, modeling his ideas after nature (again, a tip of the hat to American Transcendentalist Henry David Thoreau), which are described here. Retallack takes the word play of weather/whether and sets up a correspondence between the physical (realized) and the theoretical (unrealized). She then posits an ethic based on the principle of weather/whether. Imagine, she says, a culture sophisticated and open enough to be able to accept difference and otherness, a culture that rejects the oversimplified media response of black/white, yes/no, a culture that embraces complexity and contradiction–a “breathable” culture. And it is here where the book brilliantly dovetails with the multicultural attitudes sweeping the country today. Cage stands in opposition to the reductive and closed ideas that multiculturalism have come to stand for. While multiculturalism plays by the media-supplied dualistic rules, Cage seems to dump the idea of rules altogether and instead celebrates the idea of difference and unpredictability as a prerequisite to understanding and accepting the difficulties inherent in a pluralistic culture. It appeals to this reader as the path of least resistance and being based in action, seems entirely workable. The multicultural debate has made many people aware of the issues, but it stands in theory only and lacks the kind of pragmatism and functionality that could lead to real change as prescribed here. […], in Kenneth Goldsmith, University of Buffalo, 1995, reviewing and revisiting “John Cage Composed In America“, Essays edited by Marjorie Perloff & Charles Junkerman 1994, 286 pages, paperback, The University of Chicago Press, USA.

Video – John Cage, appearing on a 1960 CBS gameshow called I’ve Got A Secret (from Ian Leslie + Alex Ross). Cage’s ‘secret’ is that he is an avant-garde composer. After being introduced by the presenter he performs a piece called Water Walk (… more).


Video – 16×9 Frame blended animation Tagtool drawing session. Drawing by Frances Sander, post production by Dmitri Berzon. Music by Samka.

Figure – A typical Tagtool Mini Setup (Drawing by Fanijo).

…Or should I say, Gestaltic?

The Tagtool is a performative visual instrument used on stage and on the street. It serves as a VJ tool, a creative video game, or an intuitive way of creating animation. The system is operated collaboratively by an artist drawing the pictures and an animator adding movement to the artwork with a gamepad. The design achieves virtually unlimited artistic complexity with a simple set of controls, which can be mastered even by children. The project is coordinated by OMA International. Being inspired by the open source movement,  relevant to the group also to all digital arts, their aim is that all knowledge acquired within the Tagtool project should be shared. (check out for more on their project website, ). All in all, a short documentary made by 4 Graz students. Everything, that ends by adding up non-linearly tends to be… well, you know…


Video – Dance performance by Elisabeth, Tagtool drawing and animation by Die.Puntigam, music by Jan, Seppy and Dima.

Figure – A swarm cognitive map (pheromone spatial distribution map) in 3D, at a specific time t. The artificial ant colony was evolved within 2 digital grey images based on the following work. The real physical “thing” can be seen here.

[] Vitorino Ramos, The MC2 Project [Machines of Collective Conscience]: A possible walk, up to Life-like Complexity and Behaviour, from bottom, basic and simple bio-inspired heuristics – a walk, up into the morphogenesis of information, UTOPIA Biennial Art Exposition, Cascais, Portugal, July 12-22, 2001.

Synergy (from the Greek word synergos), broadly defined, refers to combined or co-operative effects produced by two or more elements (parts or individuals). The definition is often associated with the holistic conviction quote that “the whole is greater than the sum of its parts” (Aristotle, in Metaphysics), or the whole cannot exceed the sum of the energies invested in each of its parts (e.g. first law of thermodynamics) even if it is more accurate to say that the functional effects produced by wholes are different from what the parts can produce alone. Synergy is a ubiquitous phenomena in nature and human societies alike. One well know example is provided by the emergence of self-organization in social insects, via direct (mandibular, antennation, chemical or visual contact, etc) or indirect interactions. The latter types are more subtle and defined as stigmergy to explain task coordination and regulation in the context of nest reconstruction in Macrotermes termites. An example, could be provided by two individuals, who interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time. In other words, stigmergy could be defined as a particular case of environmental or spatial synergy. Synergy can be viewed as the “quantity” with respect to which the whole differs from the mere aggregate. Typically these systems form a structure, configuration, or pattern of physical, biological, sociological, or psychological phenomena, so integrated as to constitute a functional unit with properties not derivable from its parts in summation (i.e. non-linear) – Gestalt in one word (the English word more similar is perhaps system, configuration or whole). The system is purely holistic, and their properties are intrinsically emergent and auto-catalytic.

A typical example could be found in some social insect societies, namely in ant colonies. Coordination and regulation of building activities on these societies do not depend on the workers themselves but are mainly achieved by the nest structure: a stimulating configuration triggers the response of a termite worker, transforming the configuration into another configuration that may trigger in turn another (possibly different) action performed by the same termite or any other worker in the colony. Recruitment of social insects for particular tasks is another case of stigmergy. Self-organized trail laying by individual ants is a way of modifying the environment to communicate with nest mates that follow such trails. It appears that task performance by some workers decreases the need for more task performance: for instance, nest cleaning by some workers reduces the need for nest cleaning. Therefore, nest mates communicate to other nest mates by modifying the environment (cleaning the nest), and nest mates respond to the modified environment (by not engaging in nest cleaning).

Swarms of social insects construct trails and networks of regular traffic via a process of pheromone (a chemical substance) laying and following. These patterns constitute what is known in brain science as a cognitive map. The main differences lies in the fact that insects write their spatial memories in the environment, while the mammalian cognitive map lies inside the brain, further justified by many researchers via a direct comparison with the neural processes associated with the construction of cognitive maps in the hippocampus.

But by far more crucial to the present project, is how ants form piles of items such as dead bodies (corpses), larvae, or grains of sand. There again, stigmergy is at work: ants deposit items at initially random locations. When other ants perceive deposited items, they are stimulated to deposit items next to them, being this type of cemetery clustering organization and brood sorting a type of self-organization and adaptive behaviour, being the final pattern of object sptial distribution a reflection of what the colony feels and thinks about that objects, as if they were another organism (a meta- global organism).

As forecasted by Wilson [E.O. Wilson. The Insect Societies, Belknam Press, Cambridge, 1971], our understanding of individual insect behaviour together with the sophistication with which we will able to analyse their collective interaction would advance to the point were we would one day posses a detailed, even quantitative, understanding of how individual “probability matrices” (their tendencies, feelings and inner thoughts) would lead to mass action at the level of the colony (society), that is a truly “stochastic theory of mass behaviour” where the reconstruction of mass behaviours is possible from the behaviours of single colony members, and mainly from the analysis of relationships found at the basic level of interactions.

The idea behind the MC2 Machine is simple to transpose for the first time, the mammalian cognitive map, to a environmental (spatial) one, allowing the recognition of what happens when a group of individuals (humans) try to organize different abstract concepts (words) in one habitat (via internet). Even if each of them is working alone in a particular sub-space of that “concept” habitat, simply rearranging notions at their own will, mapping “Sameness” into “Neighborness“, not recognizing the whole process occurring simultaneously on their society, a global collective-conscience emerges. Clusters of abstract notions emerge, exposing groups of similarity among the different concepts. The MC2 machine is then like a mirror of what happens inside the brain of multiple individuals trying to impose their own conscience onto the group.

Through a Internet site reflecting the “words habitat”, the users (humans) choose, gather and reorganize some types of words and concepts. The overall movements of these word-objects are then mapped into a public space. Along this process, two shifts emerge: the virtual becomes the reality, and the personal subjective and disperse beliefs become onto a social and politically significant element. That is, perception and action only by themselves can evolve adaptive and flexible problem-solving mechanisms, or emerge communication among many parts. The whole and their behaviours (i.e., the next layer in complexity – our social significant element) emerges from the relationship of many parts, even if these later are acting strictly within and according to any sub-level of basic and simple strategies, ad-infinitum repeated.

The MC2 machine will reveal then what happens in many real world situations; cooperation among individuals, altruism, egoism, radicalism, and also the resistance to that radicalism, memory of that society on some extreme positions on time, but the inevitable disappearance of that positions, to give rise to the convergence to the group majority thought (Common-sense?), eliminating good or bad relations found so far, among in our case, words and abstract notions. Even though the machine composed of many human-parts will “work” within this restrict context, she will reveal how some relationships among notions in our society (ideas) are only possible to be found, when and only when simple ones are found first (the minimum layer of complexity), neglecting possible big steps of a minority group of visionary individuals. Is there (in our society) any need for a critical mass of knowledge, in order to achieve other layers of complexity? Roughly, she will reveal for instance how democracies can evolve and die on time, as many things in our impermanent world.

Video – Jackson Pollock (USA, 1912-1956) painting outside his house in 1950. “Technique is just a means of arriving at a statement” [from YouTube]. Pollock was probably the first and still unique man on planet earth able to continuously  increase his fractal dimension signature along his life work. He call it “Action Painting“. In a way, canvas was an habitat for him.

[…] The simulated ecology of different stimuli response threshold organisms, triggered by the seeds of these stigmergic processes, whether in the form of 3D local configurations, or by the qualitative values of any conceptual data items, must not be overestimated. Above all, the behaviour that emerges from all these spatial-temporal relationships conduct us into the realm of what nature is about: dynamical patterns of complexity. Not chaotic or purely rendered at random, but at the edge of chaos (Langton), where creative and autonomous aLife survives. As reported by Nature magazine (Sept., 13, 2000), research suggests that the abstract works of artists such as Jackson Pollock are esthetically pleasing because they obey fractal rules similar to those found on the natural world. Pollock was known to have swung his paint back and forth like a pendulum, using a can on the end of a string with a hole punched in it. Researchers (Jensen) have found that if a swinging pendulum is hit with a hammer at just the right frequency (slightly less than the natural rhythm of the pendulum), its motion becomes chaotic and the paint traces out very convincing “fake Pollocks”. However, the artist had no idea of fractals or chaotic motion. This seems to be in line with the actual synthetically computational art, where there is a need to reference some kind of external artifact or mechanism, but nevertheless and as it appears, not those of the self whether they are conscious, unconscious, intuitive or not. Synthetically generative art, and above all, artificial systems of morphogenesis of any kind, should be much more about what scientists call “complexity”, and rely on nature as a physical generative force of ontological significance. Moving on to the implicit, rather on the specific. […]

in Vitorino Ramos, On the Implicit and on the Artificial – Morphogenesis and Emergent Aesthetics in Autonomous Collective Systems, ARCHITOPIA Book, Art, Architecture and Science, INSTITUT D’ART CONTEMPORAIN, J.L. Maubant et al. (Eds.), pp. 25-57, Chapter 2, ISBN 2905985631 – EAN 9782905985637, France, Feb. 2002.

Pollock’s most famous paintings were made during the “drip period” between 1947 and 1950. He rocketed to popular status following an August 8, 1949 four-page spread in Life Magazine that asked, “Is he the greatest living painter in the United States?” At the peak of his fame, Pollock abruptly abandoned the drip style. (image above)

Pollock’s work after 1951 was darker in color, including a collection painted in black on unprimed canvases. This was followed by a return to color, and he reintroduced figurative elements. During this period Pollock had moved to a more commercial gallery and there was great demand from collectors for new paintings. In response to this pressure, along with personal frustration, his alcoholism deepened. (controversial Wikipedia entry)

Working in various media including printmaking and film, Susan Aldworth has developed an extensive body of work that explores the nature of human consciousness and identity. Through blending personal and scientific narratives, Aldworth aims to challenge conventional definitions of portraiture through an examination of the internal structure of our brains. From the intricate details of the micro-circuits formed by billions of brain cells, to the output signals that the brain generates and which are recorded through the scanning process and reflect our conscious experience. By its very nature, neuroscience offers a unique bridge between the disciplines of art and science, in its pursuit of understanding human consciousness. Likewise, Aldworth advocates the internal person as a proper subject of portraiture in the light of contemporary neuroscience and the consequent understanding of what it is to be human, and how we articulate these findings via our own creative and expressive means. [text from The Portrait Anatomised, LSE Arts, 2010]

The Austrian composer Peter Ablinger transferred the frequency spectrum of one child’s voice to his computer controlled mechanical piano – A “speaking piano” reciting the Proclamation of the European Environmental Criminal Court at World Venice Forum 2009. It’s all in German, but what the piano says is all English, and it’s really neat to watch. All of a sudden the words of the Declaration become understandable to a European Environmental Criminal Court. Wien Modern was one out of ten cultural institutions asked for an artistic contribution to the event in Palazzo Ducale in Venice. The ambitious goal was to make this message audible with musical means, without falling back to a simple setting. [link]

[…] We hear sounds that obviously aren’t normal Music, but neither they are language, and one could say that sometimes, a bridging happens. Personally, I think you can understand individual words even without knowing the text, and the Eureka moment happens when you see the text, and suddenly, the language is there. […]

(more on Perception, Gestalt, Art and Music, here and here)

Figure – My first Swarm Painting SP0016 (Jan. 2002). This was done attaching the following algorithm into a robotic drawing arm. In order to do it however, pheromone distribution by the overall ant colony were carefully coded into different kinds of colors and several robotic pencils (check “The MC2 Project [Machines of Collective Conscience]“, 2001, and “On the Implicit and on the Artificial“, 2002). On the same year when the computational model appeared (2000) the concept was already extended into photography (check original paper) – using the pheromone distribution as photograms (“Einstein to Map” in the original article along with works like “Kafka to Red Ants” as well as subsequent newspaper articles). Meanwhile, in 2003, I was invited to give an invited talk over these at the 1st Art & Science Symposium in Bilbao (below). Even if I was already aware of Jeffrey Ventrella outstanding work as well as Ezequiel Di Paolo, it was there where we first met physically.

[] Vitorino Ramos, Self-Organizing the Abstract: Canvas as a Swarm Habitat for Collective Memory, Perception and Cooperative Distributed Creativity, in 1st Art & Science Symposium – Models to Know Reality, J. Rekalde, R. Ibáñez and Á. Simó (Eds.), pp. 59, Facultad de Bellas Artes EHU/UPV, Universidad del País Vasco, 11-12 Dec., Bilbao, Spain, 2003.

Many animals can produce very complex intricate architectures that fulfil numerous functional and adaptive requirements (protection from predators, thermal regulation, substrate of social life and reproductive activities, etc). Among them, social insects are capable of generating amazingly complex functional patterns in space and time, although they have limited individual abilities and their behaviour exhibits some degree of randomness. Among all activities by social insects, nest building, cemetery organization and collective sorting, is undoubtedly the most spectacular, as it demonstrates the greatest difference between individual and collective levels. Trying to answer how insects in a colony coordinate their behaviour in order to build these highly complex architectures, scientists assumed a first hypothesis, anthropomorphism, i.e., individual insects were assumed to possess a representation of the global structure to be produced and to make decisions on the basis of that representation. Nest complexity would then result from the complexity of the insect’s behaviour. Insect societies, however, are organized in a way that departs radically from the anthropomorphic model in which there is a direct causal relationship between nest complexity and behavioural complexity. Recent works suggests that a social insect colony is a decentralized system composed of cooperative, autonomous units that are distributed in the environment, exhibit simple probabilistic stimulus-response behaviour, and have only access to local information. According to these studies at least two low-level mechanisms play a role in the building activities of social insects: Self-organization and discrete Stigmergy, being the latter a kind of indirect and environmental synergy. Based on past and present stigmergic models, and on the underlying scientific research on Artificial Ant Systems and Swarm Intelligence, while being systems capable of emerging a form of collective intelligence, perception and Artificial Life, done by Vitorino Ramos, and on further experiences in collaboration with the plastic artist Leonel Moura, we will show results facing the possibility of considering as “art”, as well, the resulting visual expression of these systems. Past experiences under the designation of “Swarm Paintings” conducted in 2001, not only confirmed the possibility of realizing an artificial art (thus non-human), as introduced into the process the questioning of creative migration, specifically from the computer monitors to the canvas via a robotic harm. In more recent self-organized based research we seek to develop and profound the initial ideas by using a swarm of autonomous robots (ARTsBOT project 2002-03), that “live” avoiding the purpose of being merely a simple perpetrator of order streams coming from an external computer, but instead, that actually co-evolve within the canvas space, acting (that is, laying ink) according to simple inner threshold stimulus response functions, reacting simultaneously to the chromatic stimulus present in the canvas environment done by the passage of their team-mates, as well as by the distributed feedback, affecting their future collective behaviour. In parallel, and in what respects to certain types of collective systems, we seek to confirm, in a physically embedded way, that the emergence of order (even as a concept) seems to be found at a lower level of complexity, based on simple and basic interchange of information, and on the local dynamic of parts, who, by self-organizing mechanisms tend to form an lived whole, innovative and adapting, allowing for emergent open-ended creative and distributed production.

Kitaoka colour illusion

Fig. – Illusion created by Prof. Akiyoshi Kitaoka (Dep. of Psychology, Ritsumeikan Univ., Kyoto, Japan). If you don’t see any illusion at all, don’t worry. That’s exactly why this optical illusion is so great. The illusion is not there, or is it?! Meanwhile over his page, Akiyoshi warns: This page contains some works of “anomalous motion illusion”, which might make sensitive observers dizzy or sick. Should you feel dizzy, you had better leave this page immediately (more).

Where’s the illusion, right? Well,… what if I just tell you that no blue at all is used over this picture! No matter how strongly you want to believe you are seeing blue and green spirals here, there is no blue color in this image. There is only green, red and orange. What you think is blue is actually green. Don’t worry, … you are not daltonic. I mean, I’m a little bit but, you could check this out through Paint Shop Pro or Photoshop, if you need an affirmation. Indeed, these are just “Vain speculation un­deceived by the senses” (1670’s Scilla’s treatise) .

In fact, Relations here, between different colors (green, red and orange), are more important than each color by itself. Relations plus context are the key (more here over Generative Art, and here over Swarm Intelligence based Pattern Recognition). Through these relations, much probably using Gestalt‘s principles (the German word Gestalt could be translated into “configuration or pattern”), here Akiyoshi manages to emerge us the blue color over our perception. This does not cheat a computer of course, however could cheat our own eyes. In other areas the opposite could also be found. For instance, Humans can easily recognize a car over background trees (segment it, in just tiny lapses of a second), while this natural task could be extremely painful for computers over some cases (here is one example).

Born in Prague (inspired by 1890’s works of Christian von Ehrenfels, Austrian philosopher), then later absorbed by a great and tremendous intellectual period occurred from Germany back to Austria (Bauhaus), the Gestalt Laws of Organization have guided the study of how people perceive visual components as organized patterns or wholes, instead of many different parts. I would say that most certainly some Wertheimer’s gestaltic principles were used in here: Figure and Ground, Similarity, Proximity or Contiguity, Continuity, Closure, Area, and Symmetry (check Gestalt Theory of Visual Perception). We could see this happening also in other areas, … in Music for instance:

[…] Gestalt theory first arose in 1890 as a reaction to the prevalent psychological theory of the time – atomism. Atomism examined parts of things with the idea that these parts could then be put back together to make wholes. Atomists believed the nature of things to be absolute and not dependent on context. Gestalt theorists, on the other hand, were intrigued by the way our mind perceives wholes out of incomplete elements [1, 2]. “To the Gestaltists, things are affected by where they are and by what surrounds them…so that things are better described as “more than the sum of their parts.” [1, p. 49]. Gestaltists believed that context was very important in perception. An essay by Christian von Ehrenfels discussed this belief using a musical example. Take a 12 note melody. Play it in one key, say the key of C. Now change to another key, say the key of A flat. There might not be any notes the same in the two songs, yet a person listening to it knows that it is the same tune. It is the relationships between the notes that give us the tune, the whole, not which notes make up the tune. […], from “Gestalt Principles of Perception“, Bonnie Skaalid, Univ. of Saskatchewan, Canada, 1999.

Care for an contemporary example? Well, … the first thing that comes to my mind is DUB music genre. In fact, I do have several albums from different musicians over my house. Dub music evolved in Jamaica (1968) from early rastafarian instrumental reggae music and versions that incorporated fairly primitive reverbs and echo sound effects, being found by accident (engineer Byron Smith left the vocal track out by accident). Over decades, it inspired immense groups of musicians from well-known bands such as The Police, The Clash, UB40 up to reputed musicians such as Bill Laswell. Of course !, it was not far from what John Cage have made for the solo piano Music of Changes, to determine which notes should be used and when they should sound. In the fifty’s, Cage start it to use the mechanism of the I Ching (Chinese “Book of Changes”) in the composition of his music in order to provide a framework for his uses of chance.

Other most recent bands include, Leftfield, Massive Attack, Bauhaus, The Beastie Boys, Asian Dub Foundation, Underworld, Thievery Corporation, Gorillaz, Kruder & Dorfmeister, and DJ Spooky. But what is then so special about Dub? Well, one of this genre’s most striking features is the fact that some if not all musical sentences are incomplete. Those special sentences (Gestaltic, let me add), are normally followed by a pause. The most amazing thing however, is that us, Humans could perceive the entire sentence being formed on the back of our minds! So the music is not there, and at the same time, we are listening to two adjacent simultaneous melodies, as we were a composer. By just using relations among a few notes, we soon start to emerge a perception for the whole sentence, as if they were self-organizing! Being it extremely rhythmic, this often could lead us to a sweet soft state of overwhelming emotion, or exalted organic feel to the music .

As you will probably know by now, the same could happen over misplaced letters over an entire phrase. Even if some letters are not at their right proper place, at each word, we could still perceive the whole sentence meaning. Up to your gestaltic neurons to decipher.

Next time you go to a rave party (I never did, neither pretend to), do think about the title of this post, the figure above, as well as on all those great past musicians, along with – unfortunately – awkward current DJ’s, who pass on for hours strident music mixes without knowing at all what Gestalt is all about! Oh, … by the way, should you feel extremely dizzy, do follow Akiyoshi’s advice: If you start feeling unwell when using this website (rave party), immediately cover one eye with your hand and then leave the page (leave the party). Do not close your both eyes because that can make the attack worse!


Transition behavior of one Artificial Ant Colony in presence of a sudden change in his artificial digital image Habitat, between two different Digital Grey Images (face of Einstein and a Map). Created with an Artificial Ant Colony, that uses images as Habitats, being sensible to their gray levels [in, V. Ramos, F. Almeida, “Artificial Ant Colonies in Digital Image Habitats – a mass behavior effect study on Pattern Recognition“, ANTS’00 Conf., Brussels, Belgium, 2000].

After “Einstein face” is injected as a substrate at t=0, 100 iterations occur. At this point you could recognize the face. Then, a new substrate (a new “environmental condition”) is imposed (Map image). The colony then adapts quickly to this new situation, losing their collective memory of past contours.

In white, the higher levels of pheromone (a chemical evaporative sugar substance used by swarms on their orientation trough out the trails). It’s exactly this artificial evaporation and the computational ant collective group synergy reallocating their upgrades of pheromone at interesting places, that allows for the emergence of adaptation and “perception” of new images. Only some of the 6000 iterations processed are represented. The system does not have any type of hierarchy, and ants communicate only in indirect forms, through out the successive alteration that they found on the Habitat. If you however, inject Einstein image again as a substrate, the whole ant society will converge again to it, but much faster than the first time, due to the residual memory distributed in the environment.

As a whole, the system is constantly trying to establish a proper compromise between memory (past solutions – via pheromone reinforcement) and novel ones in order to adapt (new conditions on the habitat, through pheromone evaporation). The right compromise, ables the system to tackle two contradictory situations: keeping some memory while learning something radically new. Antagonist features such as exploration and exploitation are tackled this way.

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.


Blog Stats

  • 244,343 hits