You are currently browsing the tag archive for the ‘Evolutionary Algorithms’ tag.

Four different snapshots (click to enlarge) from one of my latest books, recently published in Japan: Ajith Abraham, Crina Grosan, Vitorino Ramos (Eds.), “Swarm Intelligence in Data Mining” (群知能と  データマイニング), Tokyo Denki University press [TDU], Tokyo, Japan, July 2012.

Figure (click to enlarge) – Cover from one of my books published last month (10 July 2012) “Swarm Intelligence in Data Mining” recently translated and edited in Japan (by Tokyo Denki University press [TDU]). Cover image from Amazon.co.jp (url). Title was translated into 群知能と  データマイニング. Funny also, to see my own name for the first time translated into Japanese – wonder if it’s Kanji. A brief synopsis follow:

(…) Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration from the biological examples by swarming, flocking and herding phenomena in vertebrates. Particle Swarm Optimization (PSO) incorporates swarming behaviours observed in flocks of birds, schools of fish, or swarms of bees, and even human social behaviour, from which the idea is emerged. Ant Colony Optimization (ACO) deals with artificial systems that is inspired from the foraging behaviour of real ants, which are used to solve discrete optimization problems. Historically the notion of finding useful patterns in data has been given a variety of names including data mining, knowledge discovery, information extraction, etc. Data Mining is an analytic process designed to explore large amounts of data in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data. In order to achieve this, data mining uses computational techniques from statistics, machine learning and pattern recognition. Data mining and Swarm intelligence may seem that they do not have many properties in common. However, recent studies suggests that they can be used together for several real world data mining problems especially when other methods would be too expensive or difficult to implement. This book deals with the application of swarm intelligence methodologies in data mining. Addressing the various issues of swarm intelligence and data mining using different intelligent approaches is the novelty of this edited volume. This volume comprises of 11 chapters including an introductory chapters giving the fundamental definitions and some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed. (…) (more)

It is very difficult to make good mistakes“, Tim Harford, July 2011.

TED talk (July 2011) by Tim Harford a writer on Economics who studies Complex Systems, exposing a surprising link among the successful ones: they were built through trial and error. In this sparkling talk from TEDGlobal 2011, he asks us to embrace our randomness and start making better mistakes [from TED]. Instead of the God complex, he purposes trial and error, or to be more precise, Genetic Algorithms and Evolutionary Computation (one of those examples over his talk  is indeed the evolutionary optimal design of an airplane nozzle).

Now, we may ask, if it’s clear to you from the talk whether the nozzle was computationally designed using evolutionary search as suggested by the imagery, or was the imagery designed to describe the process in the laboratory? … as a colleague ask me the other day over Google plus. A great question, since as I believe it will be not clear to everyone watching that lecture.

Though, it was clear to me from the beginning, for one simple reason. That is a well-know work in the Evolutionary Computation area, done by one of its pioneers, Professor Hans-Paul Schwefel from Germany, in 1974 I believe. Unfortunately, at least to me I must say, Tim Harford did not mentioned the author, neither he mentions over his talk, the entire Evolutionary Computation or Genetic Algorithms area, even if he makes a clear bridge between these concepts and the search for innovation. The optimal nozzle design was in fact produced for the first time, on Schwefel‘s PhD thesis (“Adaptive Mechanismen in der Biologischen Evolution und ihr Einfluß auf die Evolutiongeschwindigkeit“), and he did arrive at this results by using a branch of Evolutionary Computation know as (ES) Evolution Strategies [here is a Wikipedia entry]. The objective was to achieve the maximum thrust and for that some parameters should be adjusted, such as in which point the small aperture should be put between the two entrances. What follows is a rather old video from YouTube on the process:

The animation shows the evolution of a nozzle design since its initial configuration until the final one. After achieving such a design it was a a little difficult understanding why the surprising design was good and a team of physicists and engineers gathered to provide an investigation aiming at devising some explanation for the final nozzle configuration. Schwefel (later on with his German group) also investigated the algorithmic features of Evolution Strategies, what made possible different generalizations such as a surplus of offspring created, the use of non-elitist evolution strategies (the comma selection scheme), and the use of recombination beyond the well known mutation operator to generate the offspring. Here are some related links and papers (link).

Albeit these details … I did enjoyed the talk a lot as well as his quote above. There is still a subtle difference between “trial and error” and “Evolutionary search” even if linked, but when Tim Harford makes a connection between Innovation and Evolutionary Computation, it remembered me back the “actual” (one decade now, perhaps) work of David Goldberg (IlliGAL – Illinois Genetic Algorithms laboratory). Another founding father of the area, now dedicated to innovation, learning, etc… much on these precise lines. Mostly his books, (2002) The design of innovation: Lessons from and for competent genetic algorithms. Kluwer Academic Publishers, and (2006) The Entrepreneurial Engineer by Wiley.

Finally, let me add, that there are other beautiful examples of Evolutionary Design. The one I love most – however – (for several reasons, namely the powerful abstract message that is sends out into other conceptual fields) is this: a simple bridge. Enjoy, and for some seconds do think about your own area of work.

Figure – Application of Mathematical Morphology openings and closing operators of increasing size on different digital images (from Fig. 2, page 5).

[] Vitorino Ramos, Pedro Pina, Exploiting and Evolving R{n} Mathematical Morphology Feature Spaces, in Ronse Ch., Najman L., Decencière E. (Eds.), Mathematical Morphology: 40 Years On, pp. 465-474, Springer Verlag, Dordrecht, The Netherlands, 2005.

(abstract) A multidisciplinary methodology that goes from the extraction of features till the classification of a set of different Portuguese granites is presented in this paper. The set of tools to extract the features that characterize the polished surfaces of granites is mainly based on mathematical morphology. The classification methodology is based on a genetic algorithm capable of search for the input feature space used by the nearest neighbor rule classifier. Results show that is adequate to perform feature reduction and simultaneous improve the recognition rate. Moreover, the present methodology represents a robust strategy to understand the proper nature of the textures studied and their discriminant features.

(to obtain the respective PDF file follow link above or visit chemoton.org)

The following letter entitled “Darwin among the machines“, was sent on June 1863, by Samuel Butler, the novelist (signed here as Cellarius) to the editor of the Press, Christchurch, New Zealand (13 June, 1863). The article was much probably the first to raise the possibility that machines were a kind of “mechanical life” undergoing constant evolution, something that is now happening on the realm of Evolutionary Computation, Evolution Strategies along with other types of Genetic Algorithms, and that eventually machines might supplant humans as the dominant species. What follows are some excerpts. The full letter could be achieved here. It is truly, an historic visionary document:

[…] “Our present business lies with considerations which may somewhat tend to humble our pride and to make us think seriously of the future prospects of the human race. If we revert to the earliest primordial types of mechanical life, to the lever, the wedge, the inclined plane, the screw and the pulley, or (for analogy would lead us one step further) to that one primordial type from which all the mechanical kingdom has been developed. (…) We refer to the question: What sort of creature man’s next successor in the supremacy of the earth is likely to be. We have often heard this debated; but it appears to us that we are ourselves creating our own successors; we are daily adding to the beauty and delicacy of their physical organisation; we are daily giving them greater power and supplying by all sorts of ingenious contrivances that self-regulating, self-acting power which will be to them what intellect has been to the human race. In the course of ages we shall find ourselves the inferior race. Inferior in power, inferior in that moral quality of self-control, we shall look up to them as the acme of all that the best and wisest man can ever dare to aim at. (…) Day by day, however, the machines are gaining ground upon us; day by day we are becoming more subservient to them; more men are daily bound down as slaves to tend them, more men are daily devoting the energies of their whole lives to the development of mechanical life. The upshot is simply a question of time, but that the time will come when the machines will hold the real supremacy over the world and its inhabitants is what no person of a truly philosophic mind can for a moment question. (…) For the present we shall leave this subject, which we present gratis to the members of the Philosophical Society. Should they consent to avail themselves of the vast field which we have pointed out, we shall endeavour to labour in it ourselves at some future and indefinite period.” […]

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change“. Charles Darwin (On the Origin of Species, Nov. 1859)

During the Victorian era where high prudery and morality were constant, it would be hard to imagine seeing Charles Darwin wearing a Scottish-kilt. In fact, men’s formal clothing was less colourful than it was in the previous century, while women’s tight-fitting jersey dresses of the 1880s covered the body, leaving little to the imagination (source). There is however, one beautiful – as in strict sense of delighting the senses for exciting intellectual or emotional admiration – reason, I think he should have done it (!), regardless the  obvious bearing consequences of a severe Victorian society. Surprisingly, some how, that reason is linked to cheetahs chasing gazelles, among many other things…

As the image of Charles Darwin wearing a kilt, you will probably find these awkward too, but when a cheetah chases a gazelle, banded tartan Scottish-kilt woven textile like patterns soon start to pop-up everywhere. Not at the ground terrain level, of course. Instead, they appear as a phenotype-like map between your present and the past. You may think that this banded tartans will have no significance for your life, but do mind this: crying babies do it all the time with their mommy’s and fathers, companies do it with other companies in their regular business, people commuting in large cities do it over large highways, human language, literature and culture does it, friends do it, PC virus and anti-virus software do it, birds singing do it also, … and even full countries at war do it.

One extreme example is the Cold War, where for the first time on our Human history, co-evolutionary arms-race raised to unprecedented levels. Co-Evolution is indeed the right common key-word for all these phenomena, while large white banded strips punctuated by tiny black ones (bottom-left woven kilt above), would be the perfect correspondent tartan pattern for the case of the Cold War example mentioned. But among these, there is of course, much more Scottish-kilt like patterns we could find. Ideas, like over this TV ad above, co-evolve too. Here, the marketeer decided to co-evolve with a previous popular famous meme image: Sharon Stone crossing his legs at the 1992 ‘Basic Instinctmovie. In fact, there is an authentic plethora of different possible behavioural patterns. Like a fingerprint (associated with different Gaelic clans), each of these patterns correspond to a lineage of current versus ancestral strategies, trying to solve a specific problem, or achieving one precise goal. But as the strategic landscape is dynamically changing all the time, a good question is, how can we visualize it. And, above all, what vital information and knowledge could we retrieve from this evolutionary Scottish-kilts maps.

Fig. – The frontispiece drawing to the English edition of Ernst Haeckel‘s Evolution of Man (trans. 1903) presents a skull labelled “Australian Negro” as an intervening evolutionary stage between the “Mediterranean” skull and those of the lower primates (from the 1891 ed. of the Anthropogenie).

In nature, organisms and species coexist in an ecosystem, where each species has its own place or niche in the system. The environment contains a limited number and amount of resources, and the various species must compete for access to those resources, where successive adaptations in one group put pressure on another group to catch up (e.g., the coupled phenomena of speed in the cheetah and evasive agility in the gazelle). Through these interactions, species grow and change, each influencing the others evolutionary development [7]. This process of bi-adaptive relationship (in some cases can also assume a form of cooperation and mutualism) or reciprocal adaptation is know as Co-evolution, i.e. the evolution of two or more competing populations with coupled fitness.

The phenomena has several interesting features that may potentially enhance the adaptive power of artificial evolution [7], or  other types of bio-inspired learning systems. In particular, competing populations may reciprocally drive one another to increasing levels of complexity by producing an evolutionary “arms race”, where each group may become bigger, faster, more lethal, more intelligent, etc. Co-Evolution can then happen either between a learner (e.g., single population) and its environment (i.e. based on competitions among individuals in the population) or between learning species (two populations evolving), where the fitness of individuals is based on their behaviour in the context of the individuals of the other population [7]. This latter type of co-evolutionary search is often described as “host-parasite”, or “predator-prey” co-evolution. A good example and application of co-evolutionary learning include the pioneering work by Hillis in 1990 [1] on sorting networks.

It can occur at multiple levels of biology: it can be as microscopic as correlated mutations between amino acids in a protein, or as macroscopic as co-varying traits between different species in an environment. Being biological Co-Evolution, in a broad sense, “the change of a biological object triggered by the change of a related object” [2], his visualization however, could be profoundly hard. In fact, attempting to define and monitor “progress” in the context of Co-Evolutionary systems can be a somewhat nightmarish experience , as stated in [4]. It’s exactly here where Scottish-kilts come into play.

In 1995 [3], two researchers had a simple, yet powerful idea. In order to monitor the dynamics of artificial competitive co-evolutionary systems between two populations, Dave Cliff and Geoffrey Miller [3,4,5] proposed evaluating the performance of an individual from the current population in a series of trials against opponents from all previous generations. while visualizing the results as 2D grids of shaded cells or pixels: qualitative patterns in the shading can thus indicate different classes of co-evolutionary dynamic. Since their technique involves pitting a Current Individual (CI) against Ancestral Opponents (AO), they referred to the visualizations as CIAO plots (fig. above [3]).

Important Co-Evolutionary dynamics such as limited evolutionary memory, “Red Queen” effects or intransitive dominance cycling, will then be revealed like a fingerprint as certain qualitative patterns. Dominance cycling, for instance, it’s a major factor on Co-Evolution, wish could appear or not, during the entire co-evolutionary process. Imagine, for instance, 3 individuals (A,B,C) or strategies. Like over the well known “Rock, Paper, Scissors” game, strategy B could beat strategy A, strategy C could beat B, and strategy A could beat C, over and over in an eternal cycling, where only “arms race” specialized learning will emerge, at the cost of a limited learning generalization against a possible fourth individual-strategy D. If you play poker, you certainly know what I am talking about, since 2 poker players are constantly trying to broke this behavioural cycle, or entering it, depending on their so-far success.

Above (left and right figures – [3]), two idealised typical CIAO plot patterns can be observed, where darker shading denotes higher scores. On the left figure, however, co-evolutionary intransitive dominance cycling is a constant, where current elites (population A elites) score highly against population B opponents from 3, 8 and 13 generations ago, but not so well against generations in between. On the other hand (right figure), the behavioural pattern is completely different: over here we do observe limited evolutionary memory, where the current elites do well against opponents from 3,4 and 5 generations ago, but much less well against more distant ancestral opponents.

For to win one hundred victories in one hundred battles is not the acme of skill. To subdue the enemy without fighting is the acme of skill.” ~ Sun Tzu

Of course, in increasingly complex real-world situations Scottish-kilt like CIAO plots are much noisy than this (fig. above -[7]) where banded tartans could be less prominent, while the same could happen in irregular dominance cycling as elegantly showed by Cartlidge and Bullock in 2004 [6]. Above, some of my own experiences can be observed (submitted work). Over here I decided to co-evolve a AI agent strategy to play against a pool of 15 different strategies (6 of those confronts are presented above), and as a result, 6 different behavioural patterns emerged between them. All in all, the full spectrum of co-evolving dynamics could be observed, from the “Red Queen” effect, till alternate dominant cycles, and limited or long evolutionary memory. Even if some dynamics seem counter-productive in one-by-one confronts, in fact, all of these dynamics are useful in some way, as when you play Poker or the “Rock, Paper, Scissors” game. A typical confront between game memory (exploitation) and the ability to generalize (exploration). Where against precise opponents limited evolutionary memory was found, the same effect produced dominant cycles or long evolutionary memory against other strategies. The idea of course, is not to co-evolve a super-strategy to win all one-by-one battles (something that would be rather impossible; e.g. No free Lunch Theorem) but instead to win the whole round-robin tournament, by being highly adaptive and/or exaptive.

So next time you see someone wearing a banded tartan Scottish-kilt do remind yourself that, while getting trapped in traffic, that precise pattern could be the result of your long year co-evolved strategies to find the quickest way home, while confronting other commuters doing the same. And that, somewhere, somehow, Charles Darwin is envying your observations…

.

[1] W. Daniel Hillis (1990), “Co-Evolving Parasites improve Simulated Evolution as an Optimization Procedure”, Physica D, Vol. 42, pp. 228-234 (later in, C. Langton et al. (Eds.) (1992), Procs. Artificial Life II, Addison-Welsey, pp. 313-324).

[2] Yip et al.; Patel, P; Kim, PM; Engelman, DM; McDermott, D; Gerstein, M (2008). “An integrated system for studying residue Coevolution in Proteins“. Bioinformatics 24 (2): 290-292. doi:10.1093/bioinformatics/btm584. PMID 18056067.

[3] Dave Cliff, Geoffrey F. Miller, (1995), “Tracking the Red Queen: Methods for measuring co-evolutionary progress in open-ended simulations“. In F. Moran, A. Moreno, J. J. Merelo, & P. Cachon (Eds.), Advances in artificial life: Proceedings of the Third European Conference on Artificial Life (pp. 200-218). Berlin: Springer-Verlag.

[4] Dave Cliff, Geoffrey F. Miller, (2006), “Visualizing Co-Evolution with CIAO plots“, Artificial Life, 12(2), 199-202

[5] Dave Cliff, Geoffrey F. Miller (1996). “Co-evolution of pursuit and evasion II: Simulation methods and results“. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 506-515). Cambridge, MA: MIT Press.

[6] Cartlidge, J. and Bullock S., (2004), “Unpicking Tartan CIAO plots: Understanding irregular Co-Evolutionary Cycling“, Adaptive Behavior Journal, 12: 69-92, 2004.

[7] Ramos, Vitorino, (2007), “Co-Cognition, Neural Ensembles and Self-Organization“, extended abstract for a seminar talk at ISR – Institute for Systems and Robotics, Technical Univ. of Lisbon (IST), Lisbon, PORTUGAL. May 31, 2007.

Abraham, Ajith; Grosan, Crina; Ramos, Vitorino (Eds.), Stigmergic Optimization, Studies in Computational Intelligence (series), Vol. 31, Springer-Verlag, ISBN: 3-540-34689-9, 295 p., Hardcover, 2006.

TABLE OF CONTENTS (short /full) / CHAPTERS:

[1] Stigmergic Optimization: Foundations, Perspectives and Applications.
[2] Stigmergic Autonomous Navigation in Collective Robotics.
[3] A general Approach to Swarm Coordination using Circle Formation.
[4] Cooperative Particle Swarm Optimizers: a powerful and promising approach.
[5] Parallel Particle Swarm Optimization Algorithms with Adaptive
 Simulated Annealing.
[6] Termite: a Swarm Intelligent Routing algorithm for Mobile
 Wireless ad-hoc Networks.
[7] Linear Multiobjective Particle Swarm Optimization.
[8] Physically realistic Self-Assembly Simulation system.
[9] Gliders and Riders: A Particle Swarm selects for coherent Space-time Structures in Evolving Cellular Automata.
[10] Stigmergic Navigation for Multi-agent Teams in Complex Environments.
[11] Swarm Intelligence: Theoretical proof that Empirical techniques are Optimal.
[12] Stochastic Diffusion search: Partial function evaluation in Swarm Intelligence Dynamic Optimization.

[] Crina Grosan, Ajith Abraham, Sang Yong Han, Vitorino Ramos, Stock Market Prediction using Multi Expression Programming, in ALEA´05, Workshop on Artificial Life and Evolutionary Algorithms at EPIA´05 – Proc. of the 12th Portuguese Conference on Artificial Intelligence, C. Bento, A. Cardoso and G. Dias (Eds.), IEEE Press, pp. 73-78, 2005.

The use of intelligent systems for stock market predictions has been widely established. In this paper we introduce a genetic programming technique (called Multi-Expression programming) for the prediction of two stock indices. The performance is then compared with an artifcial neural network trained using Levenberg-Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-fuzzy model, a difference boosting neural network. We considered Nasdaq-100 index of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index as test data.

(to obtain the respective PDF file follow link above or visit chemoton.org)

Springer book “Swarm Intelligence in Data Mining” (Studies in Computational Intelligence Series, Vol. 34) published in late 2006, is receiving a fair amount of attention, so much so, that early this year, Tokyo Denki University press (TDU) decided to negotiate with Springer the translation rights and copyrights in order to released it over their country in Japanese language. The Japanese version will now become shortly available, and I do hope – being one of the scientific editors – it will receive increasing attention as well in Japan, being it one of the most difficult and extraordinary real-world areas we could work nowadays among computer science. Multiple Sequence Alignment (MSA) within Bio-informatics is just one recent example, Financial Markets another. The amount of data – 100000 DVD’s every year -, CERN’s Large Hadron Collider (LHC) will collect is yet another. In order to transform data into information, and information into useful and critical knowledge, reliable and robust Data Mining is more than ever needed, on our daily life.

Meanwhile, I wonder how the Japanese cover design will be?! Starting with it’s own title, which appears to be pretty hard to translate. According to Yahoo BabelFish the Japanese characters (群れの知性) – derived among other language scripts from Kanji – correspond to the English sentence “Swarm Intelligence“. I wonder if this translation is correct or not, since “swarm” in itself, is kind of difficult to translate. Some meanings of it point out to a spaghetti dish, as well, which kind of makes some logic too. Moreover, the technical translation of it is also difficult. I guess the best person to handle the translation (at least from the list of colleagues around the world I know) is Claus Aranha. (IBA Lab., University of Tokyo). Not only he works in Japan for several years now, as well as some of his works focus this precise area.

SIDM book (Swarm Int. in Data Mining) focus on the hybridization of these two areas. As you may probably now, Data Mining (see also; Knowledge Extraction) refers to a collection of techniques – many of them classical – that envisions to tackle large amounts of data, in order to perform classification, clustering, sorting, feature selection, search, forecasting, decision, meaningful extraction, association rule discovery, sequential pattern discovery, etc. In recent years however (1985-2000), state of the art Artificial Intelligence such as Evolutionary Computation was also used, since some of his problems could be seen as – or properly translated to – optimization problems (namely, combinatorial). The same now happens with Swarm Intelligence, since some of it’s unique self-organizing distributed features (allowing direct applications over Grid Computing) seems ideal to tackle some of the most complex data mining problems we may face today.

For those willing for more, I will leave you with it’s contents (chapters), a foreword to this book by James Kennedy (one of the founding fathers of PSO Particle Swarm Optimization, along with Russell C. Eberhart, and Yuhui Shi) which I vividly recommend (starting with the sentence “Science is a Swarm“!), as well as a more detailed description to it:

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving optimization problems that originally took its inspiration from the biological examples by swarming, flocking and herding phenomena in vertebrates. Particle Swarm Optimization (PSO) incorporates swarming behaviors observed in flocks of birds, schools of fish, or swarms of bees, and even human social behavior, from which the idea is emerged. Ant Colony Optimization (ACO) deals with artificial systems that is inspired from the foraging behavior of real ants, which are used to solve discrete optimization problems. Historically the notion of finding useful patterns in data has been given a variety of names including data mining, knowledge discovery, information extraction, etc. Data Mining is an analytic process designed to explore large amounts of data in search of consistent patterns and/or systematic relationships between variables, and then to validate the findings by applying the detected patterns to new subsets of data. In order to achieve this, data mining uses computational techniques from statistics, machine learning and pattern recognition. Data mining and Swarm intelligence may seem that they do not have many properties in common. However, recent studies suggests that they can be used together for several real world data mining problems especially when other methods would be too expensive or difficult to implement. This book deals with the application of swarm intelligence methodologies in data mining. Addressing the various issues of swarm intelligence and data mining using different intelligent approaches is the novelty of this edited volume. This volume comprises of 11 chapters including an introductory chapters giving the fundamental definitions and some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.

The eleven chapters are organized as follows. In Chapter 1, Grosan et al. present the biological motivation and some of the theoretical concepts of swarm intelligence with an emphasis on particle swarm optimization and ant colony optimization algorithms. The basic data mining terminologies are explained and linked with some of the past and ongoing works using swarm intelligence techniques. Martens et al. in Chapter 2 introduce a new algorithm for classification, named AntMiner+, based on an artificial ant system with inherent selforganizing capabilities. AntMiner+ differs from the previously proposed AntMiner classification technique in three aspects. Firstly, AntMiner+ uses a MAX-MIN ant system which is an improved version of the originally proposed ant system, yielding better performing classifiers. Secondly, the complexity of the environment in which the ants operate has substantially decreased. Finally, AntMiner+ leads to fewer and better performing rules. In Chapter 3, Jensen presents a feature selection mechanism based on ant colony optimization algorithm to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. The proposed method is applied to two very different challenging tasks, namely web classification and complex systems monitoring. Galea and Shen in the fourth chapter present an ant colony optimization approach for the induction of fuzzy rules. Several ant colony optimization algorithms are run simultaneously, with each focusing on finding descriptive rules for a specific class. The final outcome is a fuzzy rulebase that has been evolved so that individual rules complement each other during the classification process. In the fifth chapter Tsang and Kwong present an ant colony based clustering model for intrusion detection. The proposed model improves existing ant-based clustering algorithms by incorporating some meta-heuristic principles. To further improve the clustering solution and alleviate the curse of dimensionality in network connection data, four unsupervised feature extraction algorithms are also studied and evaluated. Omran et al. in the sixth chapter present particle swarm optimization algorithms for pattern recognition and image processing problems. First a clustering method that is based on PSO is discussed. The application of the proposed clustering algorithm to the problem of unsupervised classification and segmentation of images is investigated. Then PSO-based approaches that tackle the color image quantization and spectral unmixing problems are discussed.
In the seventh chapter Azzag et al. present a new model for data clustering, which is inspired from the self-assembly behavior of real ants. Real ants can build complex structures by connecting themselves to each others. It is shown is this paper that this behavior can be used to build a hierarchical tree-structured partitioning of the data according to the similarities between those data. Authors have also introduced an incremental version of the artificial ants algorithm. Kazemian et al. in the eighth chapter presents a new swarm data clustering method based on Flowers Pollination by Artificial Bees (FPAB). FPAB does not require any parameter settings and any initial information such as the number of classes and the number of partitions on input data. Initially, in FPAB, bees move the pollens and pollinate them. Each pollen will grow in proportion to its garden flowers. Better growing will occur in better conditions. After some iterations, natural selection reduces the pollens and flowers and the gardens of the same type of flowers will be formed. The prototypes of each gardens are taken as the initial cluster centers for Fuzzy C Means algorithm which is used to reduce obvious misclassification errors. In the next stage, the prototypes of gardens are assumed as a single flower and FPAB is applied to them again. Palotai et al. in the ninth chapter propose an Alife architecture for news foraging. News foragers in the Internet were evolved by a simple internal selective algorithm: selection concerned the memory components, being finite in size and containing the list of most promising supplies. Foragers received reward for locating not yet found news and crawled by using value estimation. Foragers were allowed to multiply if they passed a given productivity threshold. A particular property of this community is that there is no direct interaction (here, communication) amongst foragers that allowed us to study compartmentalization, assumed to be important for scalability, in a very clear form. Veenhuis and Koppen in the tenth chapter introduce a data clustering algorithm based on species clustering. It combines methods of particle swarm optimization and flock algorithms. A given set of data is interpreted as a multi-species swarm which wants to separate into single-species swarms, i.e., clusters. The data to be clustered are assigned to datoids which form a swarm on a two-dimensional plane. A datoid can be imagined as a bird carrying a piece of data on its back. While swarming, this swarm divides into sub-swarms moving over the plane and consisting of datoids carrying similar data. After swarming, these sub swarms of datoids can be grouped together as clusters. In the last chapter Yang et al. present a clustering ensemble model using ant colony algorithm with validity index and ART neural network. Clusterings are visually formed on the plane by ants walking, picking up or dropping down projected data objects with different probabilities. Adaptive Resonance Theory (ART) is employed to combine the clusterings produced by ant colonies with different moving speeds. We are very much grateful to the authors of this volume and to the reviewers for their tremendous service by critically reviewing the chapters. The editors would like to thank Dr. Thomas Ditzinger (Springer Engineering Inhouse Editor, Studies in Computational Intelligence Series), Professor Janusz Kacprzyk (Editor-in-Chief, Springer Studies in Computational Intelligence Series) and Ms. Heather King (Editorial Assistant, Springer Verlag, Heidelberg) for the editorial assistance and excellent cooperative collaboration to produce this important scientific work. We hope that the reader will share our excitement to present this volume on ‘Swarm Intelligence in Data Mining’ and will find it useful.

April, 2006
Ajith Abraham, Chung-Ang University, Seoul, Korea
Crina Grosan, Cluj-Napoca, Babes-Bolyai University, Romania
Vitorino Ramos, IST Technical University of Lisbon, Portugal

[…] The type of rationality we assume in economics – perfect, logical, deductive rationality–is extremely useful in generating solutions to theoretical problems. But it demands much of human behavior – much more in fact than it can usually deliver. If we were to imagine the vast collection of decision problems economic agents might conceivably deal with as a sea or an ocean, with the easier problems on top and more complicated ones at increasing depth, then deductive rationality would describe human behavior accurately only within a few feet of the surface. For example, the game Tic-Tac-Toe is simple, and we can readily find a perfectly rational, minimax solution to it. But we do not find rational “solutions” at the depth of Checkers; and certainly not at the still modest depths of Chess and Go.

There are two reasons for perfect or deductive rationality to break down under complication. The obvious one is that beyond a certain complicatedness, our logical apparatus ceases to cope – our rationality is bounded. The other is that in interactive situations of complication, agents can not rely upon the other agents they are dealing with to behave under perfect rationality, and so they are forced to guess their behavior. This lands them in a world of subjective beliefs, and subjective beliefs about subjective beliefs. Objective, well-defined, shared assumptions then cease to apply. In turn, rational, deductive reasoning–deriving a conclusion by perfect logical processes from well-defined premises – itself cannot apply. The problem becomes ill-defined.

As economists, of course, we are well aware of this. The question is not whether perfect rationality works, but rather what to put in its place. How do we model bounded rationality in economics? Many ideas have been suggested in the small but growing literature on bounded rationality; but there is not yet much convergence among them. In the behavioral sciences this is not the case. Modern psychologists are in reasonable agreement that in situations that are complicated or ill-defined, humans use characteristic and predictable methods of reasoning. These methods are not deductive, but inductive. […] The system that emerges under inductive reasoning will have connections both with evolution and complexity. […]

in, Inductive Reasoning and Bounded Rationality (The El Farol Problem), by W. Brian Arthur, 1994.

Thursday night attendance at the El Farol Bar in Santa Fe, New Mexico - The El Farol bar problem is a problem in game theory. Based on a bar in Santa Fe, New Mexico, it was created in 1994 by W. Brian Arthur.

Thursday night attendance at the El Farol Bar in Santa Fe, New Mexico - The El Farol bar problem is a problem in game theory. Based on a bar in Santa Fe, New Mexico, it was created in 1994 by W. Brian Arthur.

This is something that you face it in everyday life, be it on bars, restaurants, supermarket cues or in highways. Buying a house or selling it. So, have a look and decide for yourself! The problem is as follows: There is a particular, finite population of people. Every Thursday night, all of these people want to go to the El Farol Bar. However, the El Farol is quite small, and it’s no fun to go there if it’s too crowded. So much so, in fact, that the following rules are in place:

  • If less than 60% of the population go to the bar, they’ll all have a better time than if they stayed at home.
  • If more than 60% of the population go to the bar, they’ll all have a worse time than if they stayed at home.

Unfortunately, it is necessary for everyone to decide at the same time whether they will go to the bar or not. They cannot wait and see how many others go on a particular Thursday before deciding to go themselves on that Thursday.

One aspect of the problem is that, no matter what method each person uses to decide if they will go to the bar or not, if everyone uses the same method it is guaranteed to fail. If everyone uses the same deterministic method, then if that method suggests that the bar will not be crowded, everyone will go, and thus it will be crowded; likewise, if that method suggests that the bar will be crowded, nobody will go, and thus it will not be crowded. Often the solution to such problems in game theory is to permit each player to use a mixed strategy, where a choice is made with a particular probability. In the case of the El Farol Bar problem, however, no mixed strategy exists that all players may use in equilibrium.

[…] Consider now a problem I will construct to illustrate inductive reasoning and how it might be modeled. N people decide independently each week whether to go to a bar that offers entertainment on a certain night. For concreteness, let us set N at 100. Space is limited, and the evening is enjoyable if things are not too crowded–specifically, if fewer than 60% of the possible 100 are present. There is no way to tell the numbers coming for sure in advance, therefore a person or agent: goes–deems it worth going–if he expects fewer than 60 to show up, or stays home if he expects more than 60 to go. (There is no need that utility differ much above and below 60.) Choices are unaffected by previous visits; there is no collusion or prior communication among the agents; and the only information available is the numbers who came in past weeks. (The problem was inspired by the bar El Farol in Santa Fe which offers Irish music on Thursday nights; but the reader may recognize it as applying to noontime lunch-room crowding, and to other coordination problems with limits to desired coordination.) Of interest is the dynamics of the numbers attending from week to week.

Notice two interesting features of this problem. First, if there were an obvious model that all agents could use to forecast attendance and base their decisions on, then a deductive solution would be possible. But this is not the case here. Given the numbers attending in the recent past, a large number of expectational models might be reasonable and defensible. Thus, not knowing which model other agents might choose, a reference agent cannot choose his in a well-defined way. There is no deductively rational solution–no “correct” expectational model. From the agents’ viewpoint, the problem is ill-defined and they are propelled into a world of induction. Second, and diabolically, any commonalty of expectations gets broken up: If all believe few will go, all will go. But this would invalidate that belief. Similarly, if all believe most will go, nobody will go, invalidating that belief. Expectations will be forced to differ.

At this stage, I invite the reader to pause and ponder how attendance might behave dynamically over time. Will it converge, and if so to what? Will it become chaotic? How might predictions be arrived at? […]

in “Inductive Reasoning and Bounded Rationality” (The El Farol Problem), by W. Brian Arthur, 1994.

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Archives

Blog Stats

  • 256,420 hits