You are currently browsing the tag archive for the ‘Visualization’ tag.

Portugal at World Expo 1998 by Vitorino Ramos

Images – Portugal (1A – top left, original input satellite image below), geodesically stretched by one of my Mathematical Morphology algorithms, in order to represent real travel times from each of the 18 regional districts in Portugal, to the rest of the territory.  From the 18, three capital districts are represented here. As departing from Lisbon (1B – top right), from Faro (1C – South of Portugal, bottom left), and from Bragança (1D – North-East region, bottom right). [World Exposition, Lisbon, Territory pavilion, 1998].

Recently one of my colleagues who knows I love maps, pointed me to an old TV show “Câmara Clara“, a cultural TV show by RTP2, at one of the main public Portuguese TV stations. Main reason for my interest was his current theme: Maps. My second reason was their guests: Joaquim Ferreira do Amaral (an ex-Minister with a passion for maps) and Manuel Lima, which wonderful work on information visualization I know for a long time (on one of my past posts I referred to one of his ongoing working sites: visualcomplexity).

For my complete and positive surprise, their interview ended with some new examples, being one of my old works referred (from 57m 12s up to 60m 26s on ). It’s a long story on how I ended doing these kind of maps. Part of it, it’s here. During 1998, the World Exposition was in Portugal, and I got invited to present a set of 18 different maps from the Portuguese territory. So I decided to geodesically stretch the travel distances from any of the 18 different capital districts, to the rest of the territory, in order to represent travel Time not Distance, or Distance as time. For that,  I have coded new algorithms based on Mathematical Morphology (MM), taking in account every road (from main roads to regional, check some images below), from which I applied different MM operators.

Unfortunately, many of those maps are now lost. I did tried hard to find them from my old digital archives, but only found those above, which represent the departure from Lisbon (the Capital), Faro and Bragança. So, if by any reason you happen to have some photos from the 1998’s World Exposition in Lisbon, inside the Territory pavilion, I would love to receive them.

Os Portugueses e a Arte dos Mapas - Câmara Clara 131 - Maio 10 2009Video (LINK) – “Câmara Clara” TV show by journalist Paula Moura Pinheiro dedicated to maps (nº 131), at one of the main public Portuguese TV stations (RTP2), broadcasted on May 3 2009, in Portuguese.

A sketchy summary of this TV program went on something like this (the poor translation is mine): At the year Google promises to launch his first and exhaustive world-wide open-access digital cartography of the African continent, Joaquim Ferreira do Amaral, passioned by the Portuguese World Discover History and collector of historical maps, joins as guest with Manuel Lima, the Portuguese information designer that recently Creativity magazine has considered one of the top bright minds along with Google and Amazon founders, debating the importance of “navigating” reality with a map. From the Portuguese cartographic history, know to be the best in the XV and XVI centuries, up to the actual state-of-the-art in this area, from which Manuel Lima is considered to be one of the top researchers at global scale.

Original + Layers Portugal at World Expo 1998 by Vitorino Ramos

Video lecture – In this new RSA Animate, Manuel Lima, senior UX design lead at Microsoft Bing, explores the power of network visualisation to help navigate our complex modern world. Taken from a lecture given by Manuel Lima as part of the RSA’s free public events programme.

Network visualization has experienced a meteoric rise in the last decade, bringing together people from various fields and capturing the interest of individuals across the globe. As the practice continues to shed light on an incredible array of complex issues, it keeps drawing attention back onto itself. Manuel Lima is a Senior UX Design Lead at Microsoft Bing and founder of, and was nominated as ‘one of the 50 most creative and influential minds of 2009’ by Creativity Magazine. He visits the RSA to explore a critical paradigm shift in various areas of knowledge, as we stop relying on hierarchical tree structures and turn instead to networks in order to properly map the inherent complexities of our modern world. The talk will showcase a variety of captivating examples of visualization and also introduce the network topology as a new cultural meme. (from RSA, lecture link).

A Pedro Cruz experimentation with soft bodies using toxi’s verlet springs. The data refers to the evolution of the top four maritime empires (Portugal, Britain, Spain and France) of the XIX and XX centuries by land extension. The visual emphasis was on their decline. Each circular shape tends to retain an area that’s directly proportional to the extent of the occupied territory on a specific year. At crucial, critical times in history, his visualization approach then follows a cell mitosis like split. Historical data came from Wikipedia. More on his project.

Fig. – Gregor Aisch visualized Guttenberg‘s dissertation, highlighting the plagiarized portions. The dark red represents complete or masked plagiarism, while the lighter red represents different categories of plagiarism. Longer bars are for normal text, and small bars represent footnote lines.

On Monday, Feb. 28, Germany’s defence minister, Karl-Theodor zu Guttenberg, resigned after admitting that he plagiarized his PhD dissertation. It followed an unprecedented outpouring of anger from Germany’s academic community when it was shown that half his doctorate was written by others. Further analysis showed more than half the 475-page paper had long sections lifted from other people’s work. Once touted as a future chancellor, he was variously branded “Baron Cut-and-Paste“, “Zu Copyberg” and “Zu Googleberg” by the German media as the scandal developed. At least 23,000 academics signed an open letter to chancellor Angela Merkel urging her to sack him (source:

Drawing (Pedigree of Man, 1879) – Ernst Haeckel‘s “tree of life”, Darwin‘s metaphorical description of the pattern of universal common descent made literal by his greatest popularizer in the German scientific world. This is the English version of Ernst Haeckel‘s tree from the The Evolution of Man (published 1879), one of several depictions of a tree of life by Haeckel. “Man” is at the crown of the tree; for Haeckel, as for many early evolutionists, humans were considered the pinnacle of evolution.

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change“. Charles Darwin (On the Origin of Species, Nov. 1859)

During the Victorian era where high prudery and morality were constant, it would be hard to imagine seeing Charles Darwin wearing a Scottish-kilt. In fact, men’s formal clothing was less colourful than it was in the previous century, while women’s tight-fitting jersey dresses of the 1880s covered the body, leaving little to the imagination (source). There is however, one beautiful – as in strict sense of delighting the senses for exciting intellectual or emotional admiration – reason, I think he should have done it (!), regardless the  obvious bearing consequences of a severe Victorian society. Surprisingly, some how, that reason is linked to cheetahs chasing gazelles, among many other things…

As the image of Charles Darwin wearing a kilt, you will probably find these awkward too, but when a cheetah chases a gazelle, banded tartan Scottish-kilt woven textile like patterns soon start to pop-up everywhere. Not at the ground terrain level, of course. Instead, they appear as a phenotype-like map between your present and the past. You may think that this banded tartans will have no significance for your life, but do mind this: crying babies do it all the time with their mommy’s and fathers, companies do it with other companies in their regular business, people commuting in large cities do it over large highways, human language, literature and culture does it, friends do it, PC virus and anti-virus software do it, birds singing do it also, … and even full countries at war do it.

One extreme example is the Cold War, where for the first time on our Human history, co-evolutionary arms-race raised to unprecedented levels. Co-Evolution is indeed the right common key-word for all these phenomena, while large white banded strips punctuated by tiny black ones (bottom-left woven kilt above), would be the perfect correspondent tartan pattern for the case of the Cold War example mentioned. But among these, there is of course, much more Scottish-kilt like patterns we could find. Ideas, like over this TV ad above, co-evolve too. Here, the marketeer decided to co-evolve with a previous popular famous meme image: Sharon Stone crossing his legs at the 1992 ‘Basic Instinctmovie. In fact, there is an authentic plethora of different possible behavioural patterns. Like a fingerprint (associated with different Gaelic clans), each of these patterns correspond to a lineage of current versus ancestral strategies, trying to solve a specific problem, or achieving one precise goal. But as the strategic landscape is dynamically changing all the time, a good question is, how can we visualize it. And, above all, what vital information and knowledge could we retrieve from this evolutionary Scottish-kilts maps.

Fig. – The frontispiece drawing to the English edition of Ernst Haeckel‘s Evolution of Man (trans. 1903) presents a skull labelled “Australian Negro” as an intervening evolutionary stage between the “Mediterranean” skull and those of the lower primates (from the 1891 ed. of the Anthropogenie).

In nature, organisms and species coexist in an ecosystem, where each species has its own place or niche in the system. The environment contains a limited number and amount of resources, and the various species must compete for access to those resources, where successive adaptations in one group put pressure on another group to catch up (e.g., the coupled phenomena of speed in the cheetah and evasive agility in the gazelle). Through these interactions, species grow and change, each influencing the others evolutionary development [7]. This process of bi-adaptive relationship (in some cases can also assume a form of cooperation and mutualism) or reciprocal adaptation is know as Co-evolution, i.e. the evolution of two or more competing populations with coupled fitness.

The phenomena has several interesting features that may potentially enhance the adaptive power of artificial evolution [7], or  other types of bio-inspired learning systems. In particular, competing populations may reciprocally drive one another to increasing levels of complexity by producing an evolutionary “arms race”, where each group may become bigger, faster, more lethal, more intelligent, etc. Co-Evolution can then happen either between a learner (e.g., single population) and its environment (i.e. based on competitions among individuals in the population) or between learning species (two populations evolving), where the fitness of individuals is based on their behaviour in the context of the individuals of the other population [7]. This latter type of co-evolutionary search is often described as “host-parasite”, or “predator-prey” co-evolution. A good example and application of co-evolutionary learning include the pioneering work by Hillis in 1990 [1] on sorting networks.

It can occur at multiple levels of biology: it can be as microscopic as correlated mutations between amino acids in a protein, or as macroscopic as co-varying traits between different species in an environment. Being biological Co-Evolution, in a broad sense, “the change of a biological object triggered by the change of a related object” [2], his visualization however, could be profoundly hard. In fact, attempting to define and monitor “progress” in the context of Co-Evolutionary systems can be a somewhat nightmarish experience , as stated in [4]. It’s exactly here where Scottish-kilts come into play.

In 1995 [3], two researchers had a simple, yet powerful idea. In order to monitor the dynamics of artificial competitive co-evolutionary systems between two populations, Dave Cliff and Geoffrey Miller [3,4,5] proposed evaluating the performance of an individual from the current population in a series of trials against opponents from all previous generations. while visualizing the results as 2D grids of shaded cells or pixels: qualitative patterns in the shading can thus indicate different classes of co-evolutionary dynamic. Since their technique involves pitting a Current Individual (CI) against Ancestral Opponents (AO), they referred to the visualizations as CIAO plots (fig. above [3]).

Important Co-Evolutionary dynamics such as limited evolutionary memory, “Red Queen” effects or intransitive dominance cycling, will then be revealed like a fingerprint as certain qualitative patterns. Dominance cycling, for instance, it’s a major factor on Co-Evolution, wish could appear or not, during the entire co-evolutionary process. Imagine, for instance, 3 individuals (A,B,C) or strategies. Like over the well known “Rock, Paper, Scissors” game, strategy B could beat strategy A, strategy C could beat B, and strategy A could beat C, over and over in an eternal cycling, where only “arms race” specialized learning will emerge, at the cost of a limited learning generalization against a possible fourth individual-strategy D. If you play poker, you certainly know what I am talking about, since 2 poker players are constantly trying to broke this behavioural cycle, or entering it, depending on their so-far success.

Above (left and right figures – [3]), two idealised typical CIAO plot patterns can be observed, where darker shading denotes higher scores. On the left figure, however, co-evolutionary intransitive dominance cycling is a constant, where current elites (population A elites) score highly against population B opponents from 3, 8 and 13 generations ago, but not so well against generations in between. On the other hand (right figure), the behavioural pattern is completely different: over here we do observe limited evolutionary memory, where the current elites do well against opponents from 3,4 and 5 generations ago, but much less well against more distant ancestral opponents.

For to win one hundred victories in one hundred battles is not the acme of skill. To subdue the enemy without fighting is the acme of skill.” ~ Sun Tzu

Of course, in increasingly complex real-world situations Scottish-kilt like CIAO plots are much noisy than this (fig. above -[7]) where banded tartans could be less prominent, while the same could happen in irregular dominance cycling as elegantly showed by Cartlidge and Bullock in 2004 [6]. Above, some of my own experiences can be observed (submitted work). Over here I decided to co-evolve a AI agent strategy to play against a pool of 15 different strategies (6 of those confronts are presented above), and as a result, 6 different behavioural patterns emerged between them. All in all, the full spectrum of co-evolving dynamics could be observed, from the “Red Queen” effect, till alternate dominant cycles, and limited or long evolutionary memory. Even if some dynamics seem counter-productive in one-by-one confronts, in fact, all of these dynamics are useful in some way, as when you play Poker or the “Rock, Paper, Scissors” game. A typical confront between game memory (exploitation) and the ability to generalize (exploration). Where against precise opponents limited evolutionary memory was found, the same effect produced dominant cycles or long evolutionary memory against other strategies. The idea of course, is not to co-evolve a super-strategy to win all one-by-one battles (something that would be rather impossible; e.g. No free Lunch Theorem) but instead to win the whole round-robin tournament, by being highly adaptive and/or exaptive.

So next time you see someone wearing a banded tartan Scottish-kilt do remind yourself that, while getting trapped in traffic, that precise pattern could be the result of your long year co-evolved strategies to find the quickest way home, while confronting other commuters doing the same. And that, somewhere, somehow, Charles Darwin is envying your observations…


[1] W. Daniel Hillis (1990), “Co-Evolving Parasites improve Simulated Evolution as an Optimization Procedure”, Physica D, Vol. 42, pp. 228-234 (later in, C. Langton et al. (Eds.) (1992), Procs. Artificial Life II, Addison-Welsey, pp. 313-324).

[2] Yip et al.; Patel, P; Kim, PM; Engelman, DM; McDermott, D; Gerstein, M (2008). “An integrated system for studying residue Coevolution in Proteins“. Bioinformatics 24 (2): 290-292. doi:10.1093/bioinformatics/btm584. PMID 18056067.

[3] Dave Cliff, Geoffrey F. Miller, (1995), “Tracking the Red Queen: Methods for measuring co-evolutionary progress in open-ended simulations“. In F. Moran, A. Moreno, J. J. Merelo, & P. Cachon (Eds.), Advances in artificial life: Proceedings of the Third European Conference on Artificial Life (pp. 200-218). Berlin: Springer-Verlag.

[4] Dave Cliff, Geoffrey F. Miller, (2006), “Visualizing Co-Evolution with CIAO plots“, Artificial Life, 12(2), 199-202

[5] Dave Cliff, Geoffrey F. Miller (1996). “Co-evolution of pursuit and evasion II: Simulation methods and results“. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 506-515). Cambridge, MA: MIT Press.

[6] Cartlidge, J. and Bullock S., (2004), “Unpicking Tartan CIAO plots: Understanding irregular Co-Evolutionary Cycling“, Adaptive Behavior Journal, 12: 69-92, 2004.

[7] Ramos, Vitorino, (2007), “Co-Cognition, Neural Ensembles and Self-Organization“, extended abstract for a seminar talk at ISR – Institute for Systems and Robotics, Technical Univ. of Lisbon (IST), Lisbon, PORTUGAL. May 31, 2007.

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.


Blog Stats

  • 244,343 hits