You are currently browsing the tag archive for the ‘Symbiotic Art and Architecture’ tag.

Figure – A swarm cognitive map (pheromone spatial distribution map) in 3D, at a specific time t. The artificial ant colony was evolved within 2 digital grey images based on the following work. The real physical “thing” can be seen here.

[] Vitorino Ramos, The MC2 Project [Machines of Collective Conscience]: A possible walk, up to Life-like Complexity and Behaviour, from bottom, basic and simple bio-inspired heuristics – a walk, up into the morphogenesis of information, UTOPIA Biennial Art Exposition, Cascais, Portugal, July 12-22, 2001.

Synergy (from the Greek word synergos), broadly defined, refers to combined or co-operative effects produced by two or more elements (parts or individuals). The definition is often associated with the holistic conviction quote that “the whole is greater than the sum of its parts” (Aristotle, in Metaphysics), or the whole cannot exceed the sum of the energies invested in each of its parts (e.g. first law of thermodynamics) even if it is more accurate to say that the functional effects produced by wholes are different from what the parts can produce alone. Synergy is a ubiquitous phenomena in nature and human societies alike. One well know example is provided by the emergence of self-organization in social insects, via direct (mandibular, antennation, chemical or visual contact, etc) or indirect interactions. The latter types are more subtle and defined as stigmergy to explain task coordination and regulation in the context of nest reconstruction in Macrotermes termites. An example, could be provided by two individuals, who interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time. In other words, stigmergy could be defined as a particular case of environmental or spatial synergy. Synergy can be viewed as the “quantity” with respect to which the whole differs from the mere aggregate. Typically these systems form a structure, configuration, or pattern of physical, biological, sociological, or psychological phenomena, so integrated as to constitute a functional unit with properties not derivable from its parts in summation (i.e. non-linear) – Gestalt in one word (the English word more similar is perhaps system, configuration or whole). The system is purely holistic, and their properties are intrinsically emergent and auto-catalytic.

A typical example could be found in some social insect societies, namely in ant colonies. Coordination and regulation of building activities on these societies do not depend on the workers themselves but are mainly achieved by the nest structure: a stimulating configuration triggers the response of a termite worker, transforming the configuration into another configuration that may trigger in turn another (possibly different) action performed by the same termite or any other worker in the colony. Recruitment of social insects for particular tasks is another case of stigmergy. Self-organized trail laying by individual ants is a way of modifying the environment to communicate with nest mates that follow such trails. It appears that task performance by some workers decreases the need for more task performance: for instance, nest cleaning by some workers reduces the need for nest cleaning. Therefore, nest mates communicate to other nest mates by modifying the environment (cleaning the nest), and nest mates respond to the modified environment (by not engaging in nest cleaning).

Swarms of social insects construct trails and networks of regular traffic via a process of pheromone (a chemical substance) laying and following. These patterns constitute what is known in brain science as a cognitive map. The main differences lies in the fact that insects write their spatial memories in the environment, while the mammalian cognitive map lies inside the brain, further justified by many researchers via a direct comparison with the neural processes associated with the construction of cognitive maps in the hippocampus.

But by far more crucial to the present project, is how ants form piles of items such as dead bodies (corpses), larvae, or grains of sand. There again, stigmergy is at work: ants deposit items at initially random locations. When other ants perceive deposited items, they are stimulated to deposit items next to them, being this type of cemetery clustering organization and brood sorting a type of self-organization and adaptive behaviour, being the final pattern of object sptial distribution a reflection of what the colony feels and thinks about that objects, as if they were another organism (a meta- global organism).

As forecasted by Wilson [E.O. Wilson. The Insect Societies, Belknam Press, Cambridge, 1971], our understanding of individual insect behaviour together with the sophistication with which we will able to analyse their collective interaction would advance to the point were we would one day posses a detailed, even quantitative, understanding of how individual “probability matrices” (their tendencies, feelings and inner thoughts) would lead to mass action at the level of the colony (society), that is a truly “stochastic theory of mass behaviour” where the reconstruction of mass behaviours is possible from the behaviours of single colony members, and mainly from the analysis of relationships found at the basic level of interactions.

The idea behind the MC2 Machine is simple to transpose for the first time, the mammalian cognitive map, to a environmental (spatial) one, allowing the recognition of what happens when a group of individuals (humans) try to organize different abstract concepts (words) in one habitat (via internet). Even if each of them is working alone in a particular sub-space of that “concept” habitat, simply rearranging notions at their own will, mapping “Sameness” into “Neighborness“, not recognizing the whole process occurring simultaneously on their society, a global collective-conscience emerges. Clusters of abstract notions emerge, exposing groups of similarity among the different concepts. The MC2 machine is then like a mirror of what happens inside the brain of multiple individuals trying to impose their own conscience onto the group.

Through a Internet site reflecting the “words habitat”, the users (humans) choose, gather and reorganize some types of words and concepts. The overall movements of these word-objects are then mapped into a public space. Along this process, two shifts emerge: the virtual becomes the reality, and the personal subjective and disperse beliefs become onto a social and politically significant element. That is, perception and action only by themselves can evolve adaptive and flexible problem-solving mechanisms, or emerge communication among many parts. The whole and their behaviours (i.e., the next layer in complexity – our social significant element) emerges from the relationship of many parts, even if these later are acting strictly within and according to any sub-level of basic and simple strategies, ad-infinitum repeated.

The MC2 machine will reveal then what happens in many real world situations; cooperation among individuals, altruism, egoism, radicalism, and also the resistance to that radicalism, memory of that society on some extreme positions on time, but the inevitable disappearance of that positions, to give rise to the convergence to the group majority thought (Common-sense?), eliminating good or bad relations found so far, among in our case, words and abstract notions. Even though the machine composed of many human-parts will “work” within this restrict context, she will reveal how some relationships among notions in our society (ideas) are only possible to be found, when and only when simple ones are found first (the minimum layer of complexity), neglecting possible big steps of a minority group of visionary individuals. Is there (in our society) any need for a critical mass of knowledge, in order to achieve other layers of complexity? Roughly, she will reveal for instance how democracies can evolve and die on time, as many things in our impermanent world.

Advertisements

Figure – My first Swarm Painting SP0016 (Jan. 2002). This was done attaching the following algorithm into a robotic drawing arm. In order to do it however, pheromone distribution by the overall ant colony were carefully coded into different kinds of colors and several robotic pencils (check “The MC2 Project [Machines of Collective Conscience]“, 2001, and “On the Implicit and on the Artificial“, 2002). On the same year when the computational model appeared (2000) the concept was already extended into photography (check original paper) – using the pheromone distribution as photograms (“Einstein to Map” in the original article along with works like “Kafka to Red Ants” as well as subsequent newspaper articles). Meanwhile, in 2003, I was invited to give an invited talk over these at the 1st Art & Science Symposium in Bilbao (below). Even if I was already aware of Jeffrey Ventrella outstanding work as well as Ezequiel Di Paolo, it was there where we first met physically.

[] Vitorino Ramos, Self-Organizing the Abstract: Canvas as a Swarm Habitat for Collective Memory, Perception and Cooperative Distributed Creativity, in 1st Art & Science Symposium – Models to Know Reality, J. Rekalde, R. Ibáñez and Á. Simó (Eds.), pp. 59, Facultad de Bellas Artes EHU/UPV, Universidad del País Vasco, 11-12 Dec., Bilbao, Spain, 2003.

Many animals can produce very complex intricate architectures that fulfil numerous functional and adaptive requirements (protection from predators, thermal regulation, substrate of social life and reproductive activities, etc). Among them, social insects are capable of generating amazingly complex functional patterns in space and time, although they have limited individual abilities and their behaviour exhibits some degree of randomness. Among all activities by social insects, nest building, cemetery organization and collective sorting, is undoubtedly the most spectacular, as it demonstrates the greatest difference between individual and collective levels. Trying to answer how insects in a colony coordinate their behaviour in order to build these highly complex architectures, scientists assumed a first hypothesis, anthropomorphism, i.e., individual insects were assumed to possess a representation of the global structure to be produced and to make decisions on the basis of that representation. Nest complexity would then result from the complexity of the insect’s behaviour. Insect societies, however, are organized in a way that departs radically from the anthropomorphic model in which there is a direct causal relationship between nest complexity and behavioural complexity. Recent works suggests that a social insect colony is a decentralized system composed of cooperative, autonomous units that are distributed in the environment, exhibit simple probabilistic stimulus-response behaviour, and have only access to local information. According to these studies at least two low-level mechanisms play a role in the building activities of social insects: Self-organization and discrete Stigmergy, being the latter a kind of indirect and environmental synergy. Based on past and present stigmergic models, and on the underlying scientific research on Artificial Ant Systems and Swarm Intelligence, while being systems capable of emerging a form of collective intelligence, perception and Artificial Life, done by Vitorino Ramos, and on further experiences in collaboration with the plastic artist Leonel Moura, we will show results facing the possibility of considering as “art”, as well, the resulting visual expression of these systems. Past experiences under the designation of “Swarm Paintings” conducted in 2001, not only confirmed the possibility of realizing an artificial art (thus non-human), as introduced into the process the questioning of creative migration, specifically from the computer monitors to the canvas via a robotic harm. In more recent self-organized based research we seek to develop and profound the initial ideas by using a swarm of autonomous robots (ARTsBOT project 2002-03), that “live” avoiding the purpose of being merely a simple perpetrator of order streams coming from an external computer, but instead, that actually co-evolve within the canvas space, acting (that is, laying ink) according to simple inner threshold stimulus response functions, reacting simultaneously to the chromatic stimulus present in the canvas environment done by the passage of their team-mates, as well as by the distributed feedback, affecting their future collective behaviour. In parallel, and in what respects to certain types of collective systems, we seek to confirm, in a physically embedded way, that the emergence of order (even as a concept) seems to be found at a lower level of complexity, based on simple and basic interchange of information, and on the local dynamic of parts, who, by self-organizing mechanisms tend to form an lived whole, innovative and adapting, allowing for emergent open-ended creative and distributed production.

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Archives

Blog Stats

  • 246,833 hits