You are currently browsing the tag archive for the ‘Support Vector Machines’ tag.

[] Crina Grosan, Ajith Abraham, Sang Yong Han, Vitorino Ramos, Stock Market Prediction using Multi Expression Programming, in ALEA´05, Workshop on Artificial Life and Evolutionary Algorithms at EPIA´05 – Proc. of the 12th Portuguese Conference on Artificial Intelligence, C. Bento, A. Cardoso and G. Dias (Eds.), IEEE Press, pp. 73-78, 2005.

The use of intelligent systems for stock market predictions has been widely established. In this paper we introduce a genetic programming technique (called Multi-Expression programming) for the prediction of two stock indices. The performance is then compared with an artifcial neural network trained using Levenberg-Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-fuzzy model, a difference boosting neural network. We considered Nasdaq-100 index of Nasdaq Stock MarketSM and the S&P CNX NIFTY stock index as test data.

(to obtain the respective PDF file follow link above or visit

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter


Blog Stats

  • 255,000 hits