You are currently browsing the tag archive for the ‘Colour Image Segmentation’ tag.

Figure – Application of Mathematical Morphology openings and closing operators of increasing size on different digital images (from Fig. 2, page 5).

[] Vitorino Ramos, Pedro Pina, Exploiting and Evolving R{n} Mathematical Morphology Feature Spaces, in Ronse Ch., Najman L., Decencière E. (Eds.), Mathematical Morphology: 40 Years On, pp. 465-474, Springer Verlag, Dordrecht, The Netherlands, 2005.

(abstract) A multidisciplinary methodology that goes from the extraction of features till the classification of a set of different Portuguese granites is presented in this paper. The set of tools to extract the features that characterize the polished surfaces of granites is mainly based on mathematical morphology. The classification methodology is based on a genetic algorithm capable of search for the input feature space used by the nearest neighbor rule classifier. Results show that is adequate to perform feature reduction and simultaneous improve the recognition rate. Moreover, the present methodology represents a robust strategy to understand the proper nature of the textures studied and their discriminant features.

(to obtain the respective PDF file follow link above or visit


With the current ongoing dramatic need of Africa to have contemporary maps (currently, Google promises to launch his first and exhaustive world-wide open-access digital cartography of the African continent very soon), back in 1999-2000 we envisioned a very simple idea into a research project (over my previous lab. – CVRM IST). Instead of producing new maps in the regular standard way, which are costly (specially for African continent countries) as well as time consuming (imagine the amount of money and time needed to cover the whole continent with high resolution aerial photos) the idea then was to hybridize trough an automatic procedure (with the help of Artificial Intelligence) new current data coming from satellites with old data coming from the computational analysis of images of old colonial maps. For instance, old roads segmented in old maps will help us finding the new ones coming from the current satellite images, as well as those that were lost. The same goes on for bridges, buildings, numbers, letters at the map, etc. However in order to do this, several preparatory steps were needed. One of those crucial steps was to obtain (segment – know to be one of the hardest procedures in image processing) the old roads, buildings, airports, at the old maps. Back in 1999-2000 while dealing with several tasks at this research project (AUTOCARTIS Automatic Methods for Updating Cartographic Maps) I started to think of using evolutionary computation in order to tackle and surpass this precise problem, in what then later become one of the first usages of Genetic Algorithms in image analysis. The result could be checked below. Meanwhile, the experience gained with AUTOCARTIS was then later useful not only for digital old books (Visão Magazine, March 2002), as well as for helping us finding water in Mars (at the MARS EXPRESS European project – Expresso newspaper, May 2003) from which CVRM lab. was one of the European partners. Much often in life simple ideas (I owe it to Prof. Fernando Muge and Prof. Pedro Pina) are the best ones. This is particularly true in science.

Figure – One original image (left – Luanda, Angola map) and two segmentation examples, rivers and roads respectively obtained through the Genetic Algorithm proposed (low resolution images). [at the same time this precise Map of Luanda, was used by me along with the face of Einstein to benchmark several dynamic image adaptive perception versus memory experiments via ant-like artificial life systems over what I then entitled Digital Image Habitats]

[] Vitorino Ramos, Fernando Muge, Map Segmentation by Colour Cube Genetic K-Mean Clustering, Proc. of ECDL´2000 – 4th European Conference on Research and Advanced Technology for Digital Libraries, J. Borbinha and T. Baker (Eds.), ISBN 3-540-41023-6, Lecture Notes in Computer Science, Vol. 1923, pp. 319-323, Springer-Verlag -Heidelberg, Lisbon, Portugal, 18-20 Sep. 2000.

Segmentation of a colour image composed of different kinds of texture regions can be a hard problem, namely to compute for an exact texture fields and a decision of the optimum number of segmentation areas in an image when it contains similar and/or non-stationary texture fields. In this work, a method is described for evolving adaptive procedures for these problems. In many real world applications data clustering constitutes a fundamental issue whenever behavioural or feature domains can be mapped into topological domains. We formulate the segmentation problem upon such images as an optimisation problem and adopt evolutionary strategy of Genetic Algorithms for the clustering of small regions in colour feature space. The present approach uses k-Means unsupervised clustering methods into Genetic Algorithms, namely for guiding this last Evolutionary Algorithm in his search for finding the optimal or sub-optimal data partition, task that as we know, requires a non-trivial search because of its NP-complete nature. To solve this task, the appropriate genetic coding is also discussed, since this is a key aspect in the implementation. Our purpose is to demonstrate the efficiency of Genetic Algorithms to automatic and unsupervised texture segmentation. Some examples in Colour Maps are presented and overall results discussed.

(to obtain the respective PDF file follow link above or visit

Image Classification of Shellfish Larvae Digital Images using Swarm Intelligence. On the left a compendium of 9 raw images (out of 20 samples) used in the present study. Respective segmented images on the rigth.

Image Classification of Shellfish Larvae Digital Images using Swarm Intelligence. On the left a compendium of 9 raw images (out of 20 samples) used in the present project. Respective segmented images on the rigth.

[] Vitorino Ramos, Jonathan Campbell, John Slater, John Gillespie, Ivan F. Bendezu and Fionn Murtagh, Swarming around Shellfish Larvae Images, in WCLC-05, 2nd World Congress on Lateral Computing, Bangalore, India, 16-18 Dec., 2005.

The collection of wild larvae seed as a source of raw material is a major sub industry of shellfish aquaculture. To predict when, where and in what quantities wild seed will be available, it is necessary to track the appearance and growth of planktonic larvae. One of the most difficult groups to identify, particularly at the species level are the Bivalvia. This difficulty arises from the fact that fundamentally all bivalve larvae have a similar shape and colour. Identification based on gross morphological appearance is limited by the time-consuming nature of the microscopic examination and by the limited availability of expertise in this field. Molecular and immunological methods are also being studied. We describe the application of computational pattern recognition methods to the automated identification and size analysis of scallop larvae. For identification, the shape features used are binary invariant moments; that is, the features are invariant to shift (position within the image), scale (induced either by growth or differential image magnification) and rotation. Images of a sample of scallop and non-scallop larvae covering a range of maturities have been analysed. In order to overcome the automatic identification, as well as to allow the system to receive new unknown samples at any moment, a self-organized and unsupervised ant-like clustering algorithm based on Swarm Intelligence is proposed, followed by simple k-NNR nearest neighbour classification on the final map. Results achieve a full recognition rate of 100% under several situations (k =1 or 3).

(to obtain the respective PDF file follow link above or visit

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Error: Twitter did not respond. Please wait a few minutes and refresh this page.


Blog Stats

  • 251,539 hits