You are currently browsing the tag archive for the ‘Ant colonies’ tag.

The dynamics of ant swarms share an uncanny similarity with the movement of various fluids (video above). Micah Streiff and his team from the Georgia Institute of Technology in Atlanta captured writhing groups of ants behaving just like liquids. You can watch them diffuse outwards from a pool, tackle jagged surface like a viscous fluid or flow from a funnel (from NewScientist | 2010 best videos).

[…] Fire ants use their claws to grip diverse surfaces, including each other. As a result of their mutual adhesion and large numbers, ant colonies flow like inanimate fluids. In this sequence of films, we demonstrate how ants behave similarly to the spreading of drops, the capillary rise of menisci, and gravity-driven flow down a wall. By emulating the flow of fluids, ant colonies can remain united under stressful conditions. […], in Micah Streiff, Nathan Mlot, Sho Shinotsuka, Alex Alexeev, David Hu, “Ants as Fluids: Physics-Inspired Biology,” ArXiv, 15 Oct 2010. http://arxiv.org/abs/1010.3256 .

Drawing – “The distinction between “natural” and “artificial” always struck me as somewhat… artificial“, unknown author (source: Abstruse Goose link) via Cesar Reyes | dpr-barcelona, Nov. 2010.

[…] What is nature? Dictionary.com has 17 different definitions. The first four definitions make no room for man in nature. Five is a correlationist universe of appearing phenomena. Six is a Newtonian universe of quantifiable forces. Seven defines nature as opposite to culture. Eight defines nature as the present-at-hand. Nine defines nature through conforming to an innate pre-determined behavior. Nine to fourteen define nature through a norm or original consistency. Fifteen defines nature as barbarism. And lastly, seventeen, nature as the absence of God’s will. The distinct thread running through all these definition is that nature is something Other to human beings or that human beings are in but out of joint with nature and with the natural. […], in Mike’s Avoiding the Void blog, “The Great Pan is dead“: A rebuke of the myth of natural balance” (link).

Nature is language. Can you read it? … mull it over.

Time-lapse imaging in live zebrafish embryos reveals that cerebellar granule cells migrate in chain-like structures as discovered by a recent article [1] [Köster et al., PLoS, Nov. 2009]. Figure above – Granule cells taken from the cerebellum of a pigeon (above, B) are shown in this 1899 drawing by legendary neuroscientist Santiago Ramón y Cajal.

Did talk about sticky objects and self-organization in the past,  how positive and negative feedback’s  stigmergic-like agents integrated could promote changes and learning over a complex system.  Same happens to bacteria as also ants. On the other hand, we do know memes are also sticky (e.g. Chip Heath, Dan Heath, “Made to Stick: Why Some Ideas Survive and Others Die“, Random House, ISBN 978-1-4000-6428-1, January 2007). What’s new however, is that there are increasing proofs that our own brains my follow similar mechanisms (as Douglas Hofstadter in the past did made some analogies with how brains could work and how ant colonies raid different environments). In this recent new study, Köster and colleagues [1] [PLoS, Nov. 2009] reveal crucial pieces of this puzzle, showing how (neuronal) cells orient themselves to migrate together (like bacteria, above). The team studied zebrafish, one of the workhorses of developmental neurobiology, because its transparent body allows researchers to track movements of cells inside of it. As explained by Mason Inman [2]:

[…] Neurons in the developing brain complete their own self-organized waltz, coordinating with their neighbors to migrate to the right spots to form the cerebellum, visual cortex, or other parts of the brain. In this issue of PLoS Biology, Reinhard Köster and colleagues show that some of these brain cells behave much like slime molds, coordinating with other cells of the same type to migrate in a herd. They found that one particular protein called Cadherin-2 is crucial in allowing the cells to adhere to their neighbors so they can coordinate their movements and all wind up in the right spot. […] Slime molds provide a textbook example of self-organization. They live as single cells until food becomes scarce. Then, they broadcast chemical signals that trigger their mass assembly into a fruiting body, with some cells forming a stalk and others turning into spores that cast about in the winds to spread far and wide. […] Neurons in the developing brain complete their own self-organized waltz, coordinating with their neighbors to migrate to the right spots to form the cerebellum, visual cortex, or other parts of the brain. In this issue of PLoS Biology, Reinhard Köster and colleagues show that some of these brain cells behave much like slime molds, coordinating with other cells of the same type to migrate in a herd. They found that one particular protein called Cadherin-2 is crucial in allowing the cells to adhere to their neighbors so they can coordinate their movements and all wind up in the right spot.[…]

[…] But the mechanisms behind this coordinated movement – in particular, how each cell adjusts its inner workings to move to the right place at the right time – are only now starting to be revealed, using imaging that tracks these cells in live animals as they develop. […] To figure out what triggers the cells to line up and move together, the authors looked at what other kinds of cells were in the neighborhood. Many studies have shown that support cells, known as glial cells, often help guide neurons during these kinds of migrations. But during the first few days of the zebrafish embryo’s development, Köster and colleagues found, there were no glial cells along the granular cells’ migration route. That means these cells must go it alone, the team reasoned, with their own mechanism for signaling between each other to line up into chains and make their move. […] Although the study focused on just one type of brain cell, the findings could explain how many types of neurons find their way to their proper spots as the brain develops. There are still some pieces of the puzzle missing, however. While the findings explain how the granule cells are able to coordinate and follow their neighbors, it’s still not clear how the first few cells to head out on the journey – those at the front of the “conga line” – get oriented in the right direction. This suggests there must be some kind of signal from surrounding cells to get them headed in the right direction, the authors argue – yet another level of organization. […] , in Mason Inman (Nov., 2009) Migrating Brain Cells Stick Together, PloS. [2]

[1] Rieger S, Senghaas N, Walch A, Köster RW (Nov., 2009) Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons. PLoS Biology.
[2] Mason Inman (Nov., 2009) Migrating Brain Cells Stick Together, PloS Biology.

For some seconds, just imagine having these 50 m² – 8 meters tall artifact constructed (above) by tiny Giant Architects in a plaza over a big city near you. Over this youtube video several scientists have filled the big city unearthed with 10 tens of cement during 3 days. Then calmly (taking several weeks), have digg it to the bone. To have a clue on what I mean just imagine having all these at Times Square  plaza in New York! or at the front-door of the  Frank Gehry’s Guggenheim Museum in Bilbao (in fact a giant spider is also there – check photo below). Colonies of eu-social insects use stigmergy in order to do this, being a good reference the work done by Karsai back in 1999 at the Artificial Life MIT Press Journal (here is the abstract – unfornately I have it on paper but not scanned):

# István Karsai, “Decentralized Control of Construction Behavior in Paper Wasps: An Overview of the Stigmergy Approach“, Spring 1999, Vol. 5, No. 2, Pages 117-136.

Grassé [26] coined the term stigmergy (previous work directs and triggers new building actions) to describe a mechanism of decentralized pathway of information flow in social insects. In general, all kinds of multi-agent groups require coordination for their effort and it seems that stigmergy is a very powerful means to coordinate activity over great spans of time and space in a wide variety of systems. In a situation in which many individuals contribute to a collective effort, such as building a nest, stimuli provided by the emerging structure itself can provide a rich source of information for the working insects. The current article provides a detailed review of this stigmergic paradigm in the building behavior of paper wasps to show how stigmergy influenced the understanding of mechanisms and evolution of a particular biological system. The most important feature to understand is how local stimuli are organized in space and time to ensure the emergence of a coherent adaptive structure and to explain how workers could act independently yet respond to stimuli provided through the common medium of the environment of the colony.

Another interesting paper (available online) is the more recent work by Mason at the 8th Artificial Life conference, in 2002. Below I have selected part of the introductory text:

# Zachary Mason ,”Programming with Stigmergy: Using Swarms for Construction“, in Artificial Life VIII Conf., Standish, Abbass, Bedau (eds)(MIT Press), New South Wales, Australia, pp. 371-375, 2002.

(…) Termite nests are large and complex. A nest may be as much as 104 or 105 times as large as an individual termite (Boneabeau et al. 1997) a ratio unparalleled in the animal kingdom. The nests of the African termite sub-family Macrotermitinae are composed of many substructures, such as protective bulwarks, pillared brood chambers, spiral cooling vents, galleries of fungus gardens and royal chambers. For all the architectural sophistication of termite nests, termites themselves are blind, weak and apparently not responsive to a coordinating authority. This work attempts to borrow and generalize the termite construction-algorithm, permitting artificial, decentralized swarms to be programmed to build complex, composable structures.
How do small, blind termites manage to build (relatively) huge, intricate nests? Work on this question includes a simple, decentralized building model (Grasse 1959) (Grasse 1984), an empirical study of termite building behavior (Bruinsma 1979), a mathematical model of the synthesis of pillars in termite nests (Deneubourg 1977), and a model explaining how modest environmental variation can cause the same termite behaviors to generate qualitatively different structures (Boneabeau et al. 1997). Most relevant to this work is (Bruinsma 1979), which records three feedback mechanisms governing termite behavior. In the first, a termite picks up a soil pellet, masticates it into a paste and injects a termiteattracting pheremone into it. When the pellet is deposited, the pheremone stimulates nearby termites to pellet-gathering behavior and makes them more likely to deposit their pellets nearby. Second, small obstacles in the terrain stimulate pellet deposits and can seed pillars. Finally, a trail pheremone allows more workers to be drawn to a construction site. Termites and many social insects interact stigmergically – that is, communication is mediated through changes in the environment rather than direct signal transmission. Computer simulations have used stigmergy to reproduce termite’s pillar-making behavior and ant’s foraging and the spontaneous cemetery building. These applications rely of qualitative stigmergy | individual agents react to a continuous variations in the environment. An example of quantitative stigmergy is (G. Theraulaz 1995), a simulation of wasp nest building. Wasps build nests by depositing cells on a lattice. Whether an empty cell is lled depends on the adjacent cells. Because all wasps have the same deposit-triggers, multiple wasps are able to simultaneously work on a single nest without without ruining each others work. A set of deposit-triggers is coherent if each no stage in the building process can be confused with an earlier stage by making only local observations, thus obviating the need for centralized control.
The goal of this work is to generalize the construction methodologies of the social insects and create a language for stigmergically assembling complex structures. Such a language permit swarms of agents to erect interesting architectures without benefit of a central controller or explicit inter-agent communication. The primary advantage of this approach is that stigmergically controlled swarms have minimal communication and no coordination overhead. Also, very little processing is demanded of agents, and the swarm can tolerate a degree of agent error. On a more abstract plane, this work is an example of designing emergent behavior. (…)

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Archives

Blog Stats

  • 254,865 hits