You are currently browsing the category archive for the ‘VR papers’ category.

Vitorino Ramos - Citations2016Jan

2016 – Up now, an overall of 1567 citations among 74 works (including 3 books) on GOOGLE SCHOLAR (https://scholar.google.com/citations?user=gSyQ-g8AAAAJ&hl=en) [with an Hirsh h-index=19, and an average of 160.2 citations each for any work on my top five] + 900 citations among 57 works on the new RESEARCH GATE site (https://www.researchgate.net/profile/Vitorino_Ramos).

Refs.: Science, Artificial Intelligence, Swarm Intelligence, Data-Mining, Big-Data, Evolutionary Computation, Complex Systems, Image Analysis, Pattern Recognition, Data Analysis.

Complete circuit diagram with pheromone - Cristian Jimenez-Romero, David Sousa-Rodrigues, Jeffrey H. Johnson, Vitorino Ramos; Figure – Neural circuit controller of the virtual ant (page 3, fig. 2). [URL: http://arxiv.org/abs/1507.08467 ]

Intelligence and decision in foraging ants. Individual or Collective? Internal or External? What is the right balance between the two. Can one have internal intelligence without external intelligence? Can one take examples from nature to build in silico artificial lives that present us with interesting patterns? We explore a model of foraging ants in this paper that will be presented in early September in Exeter, UK, at UKCI 2015. (available on arXiv [PDF] and ResearchGate)

Cristian Jimenez-Romero, David Sousa-Rodrigues, Jeffrey H. Johnson, Vitorino Ramos; “A Model for Foraging Ants, Controlled by Spiking Neural Networks and Double Pheromones“, UKCI 2015 Computational Intelligence – University of Exeter, UK, September 2015.

Abstract: A model of an Ant System where ants are controlled by a spiking neural circuit and a second order pheromone mechanism in a foraging task is presented. A neural circuit is trained for individual ants and subsequently the ants are exposed to a virtual environment where a swarm of ants performed a resource foraging task. The model comprises an associative and unsupervised learning strategy for the neural circuit of the ant. The neural circuit adapts to the environment by means of classical conditioning. The initially unknown environment includes different types of stimuli representing food (rewarding) and obstacles (harmful) which, when they come in direct contact with the ant, elicit a reflex response in the motor neural system of the ant: moving towards or away from the source of the stimulus. The spiking neural circuits of the ant is trained to identify food and obstacles and move towards the former and avoid the latter. The ants are released on a landscape with multiple food sources where one ant alone would have difficulty harvesting the landscape to maximum efficiency. In this case the introduction of a double pheromone mechanism (positive and negative reinforcement feedback) yields better results than traditional ant colony optimization strategies. Traditional ant systems include mainly a positive reinforcement pheromone. This approach uses a second pheromone that acts as a marker for forbidden paths (negative feedback). This blockade is not permanent and is controlled by the evaporation rate of the pheromones. The combined action of both pheromones acts as a collective stigmergic memory of the swarm, which reduces the search space of the problem. This paper explores how the adaptation and learning abilities observed in biologically inspired cognitive architectures is synergistically enhanced by swarm optimization strategies. The model portraits two forms of artificial intelligent behaviour: at the individual level the spiking neural network is the main controller and at the collective level the pheromone distribution is a map towards the solution emerged by the colony. The presented model is an important pedagogical tool as it is also an easy to use library that allows access to the spiking neural network paradigm from inside a Netlogo—a language used mostly in agent based modelling and experimentation with complex systems.

References:

[1] C. G. Langton, “Studying artificial life with cellular automata,” Physica D: Nonlinear Phenomena, vol. 22, no. 1–3, pp. 120 – 149, 1986, proceedings of the Fifth Annual International Conference. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/016727898690237X
[2] A. Abraham and V. Ramos, “Web usage mining using artificial ant colony clustering and linear genetic programming,” in Proceedings of the Congress on Evolutionary Computation. Australia: IEEE Press, 2003, pp. 1384–1391.
[3] V. Ramos, F. Muge, and P. Pina, “Self-organized data and image retrieval as a consequence of inter-dynamic synergistic relationships in artificial ant colonies,” Hybrid Intelligent Systems, vol. 87, 2002.
[4] V. Ramos and J. J. Merelo, “Self-organized stigmergic document maps: Environment as a mechanism for context learning,” in Proceddings of the AEB, Merida, Spain, February 2002. ´
[5] D. Sousa-Rodrigues and V. Ramos, “Traversing news with ant colony optimisation and negative pheromones,” in European Conference in Complex Systems, Lucca, Italy, Sep 2014.
[6] E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial Systems, 1st ed., ser. Santa Fe Insitute Studies In The Sciences of Complexity. 198 Madison Avenue, New York: Oxford University Press, USA, Sep. 1999.
[7] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative learning approach to the traveling salesman problem,” Universite Libre de Bruxelles, Tech. Rep. TR/IRIDIA/1996-5, ´ 1996.
[8] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for discrete optimization,” Artif. Life, vol. 5, no. 2, pp. 137– 172, Apr. 1999. [Online]. Available: http://dx.doi.org/10.1162/ 106454699568728
[9] L. M. Gambardella and M. Dorigo, “Ant-q: A reinforcement learning approach to the travelling salesman problem,” in Proceedings of the ML-95, Twelfth Intern. Conf. on Machine Learning, M. Kaufman, Ed., 1995, pp. 252–260.
[10] A. Gupta, V. Nagarajan, and R. Ravi, “Approximation algorithms for optimal decision trees and adaptive tsp problems,” in Proceedings of the 37th international colloquium conference on Automata, languages and programming, ser. ICALP’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 690–701. [Online]. Available: http://dl.acm.org/citation.cfm?id=1880918.1880993
[11] V. Ramos, D. Sousa-Rodrigues, and J. Louçã, “Second order ˜ swarm intelligence,” in HAIS’13. 8th International Conference on Hybrid Artificial Intelligence Systems, ser. Lecture Notes in Computer Science, J.-S. Pan, M. Polycarpou, M. Wozniak, A. Carvalho, ´ H. Quintian, and E. Corchado, Eds. Salamanca, Spain: Springer ´ Berlin Heidelberg, Sep 2013, vol. 8073, pp. 411–420.
[12] W. Maass and C. M. Bishop, Pulsed Neural Networks. Cambridge, Massachusetts: MIT Press, 1998.
[13] E. M. Izhikevich and E. M. Izhikevich, “Simple model of spiking neurons.” IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, vol. 14, no. 6, pp. 1569–72, 2003. [Online]. Available: http://www.ncbi.nlm.nih. gov/pubmed/18244602
[14] C. Liu and J. Shapiro, “Implementing classical conditioning with spiking neurons,” in Artificial Neural Networks ICANN 2007, ser. Lecture Notes in Computer Science, J. de S, L. Alexandre, W. Duch, and D. Mandic, Eds. Springer Berlin Heidelberg, 2007, vol. 4668, pp. 400–410. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74690-4 41
[15] J. Haenicke, E. Pamir, and M. P. Nawrot, “A spiking neuronal network model of fast associative learning in the honeybee,” Frontiers in Computational Neuroscience, no. 149, 2012. [Online]. Available: http://www.frontiersin.org/computational neuroscience/10.3389/conf.fncom.2012.55.00149/full
[16] L. I. Helgadottir, J. Haenicke, T. Landgraf, R. Rojas, and M. P. Nawrot, “Conditioned behavior in a robot controlled by a spiking neural network,” in International IEEE/EMBS Conference on Neural Engineering, NER, 2013, pp. 891–894.
[17] A. Cyr and M. Boukadoum, “Classical conditioning in different temporal constraints: an STDP learning rule for robots controlled by spiking neural networks,” pp. 257–272, 2012.
[18] X. Wang, Z. G. Hou, F. Lv, M. Tan, and Y. Wang, “Mobile robots’ modular navigation controller using spiking neural networks,” Neurocomputing, vol. 134, pp. 230–238, 2014.
[19] C. Hausler, M. P. Nawrot, and M. Schmuker, “A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee,” in 2011 5th International IEEE/EMBS Conference on Neural Engineering, NER 2011, 2011, pp. 198–202.
[20] U. Wilensky, “Netlogo,” Evanston IL, USA, 1999. [Online]. Available: http://ccl.northwestern.edu/netlogo/
[21] C. Jimenez-Romero and J. Johnson, “Accepted abstract: Simulation of agents and robots controlled by spiking neural networks using netlogo,” in International Conference on Brain Engineering and Neuro-computing, Mykonos, Greece, Oct 2015.
[22] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002.
[23] J. v. H. W Gerstner, R Kempter and H. Wagner, “A neuronal learning rule for sub-millisecond temporal coding,” Nature, vol. 386, pp. 76–78, 1996.
[24] I. P. Pavlov, “Conditioned reflexes: An investigation of the activity of the cerebral cortex,” New York, 1927.
[25] E. J. H. Robinson, D. E. Jackson, M. Holcombe, and F. L. W. Ratnieks, “Insect communication: ‘no entry’ signal in ant foraging,” Nature, vol. 438, no. 7067, pp. 442–442, 11 2005. [Online]. Available: http://dx.doi.org/10.1038/438442a
[26] E. J. Robinson, D. Jackson, M. Holcombe, and F. L. Ratnieks, “No entry signal in ant foraging (hymenoptera: Formicidae): new insights from an agent-based model,” Myrmecological News, vol. 10, no. 120, 2007.
[27] D. Sousa-Rodrigues, J. Louçã, and V. Ramos, “From standard ˜ to second-order swarm intelligence phase-space maps,” in 8th European Conference on Complex Systems, S. Thurner, Ed., Vienna, Austria, Sep 2011.
[28] V. Ramos, D. Sousa-Rodrigues, and J. Louçã, “Spatio-temporal ˜ dynamics on co-evolved stigmergy,” in 8th European Conference on Complex Systems, S. Thurner, Ed., Vienna, Austria, 9 2011.
[29] S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complexity,” in International conference on complex systems. Boston, MA, 2004, pp. 16–21.

David MS Rodrigues Reading the News Through its Structure New Hybrid Connectivity Based ApproachesFigure – Two simplicies a and b connected by the 2-dimensional face, the triangle {1;2;3}. In the analysis of the time-line of The Guardian newspaper (link) the system used feature vectors based on frequency of words and them computed similarity between documents based on those feature vectors. This is a purely statistical approach that requires great computational power and that is difficult for problems that have large feature vectors and many documents. Feature vectors with 100,000 or more items are common and computing similarities between these documents becomes cumbersome. Instead of computing distance (or similarity) matrices between documents from feature vectors, the present approach explores the possibility of inferring the distance between documents from the Q-analysis description. Q-analysis is a very natural notion of connectivity between the simplicies of the structure and in the relation studied, documents are connected to each other through shared sets of tags entered by the journalists. Also in this framework, eccentricity is defined as a measure of the relatedness of one simplex in relation to another [7].

David M.S. Rodrigues and Vitorino Ramos, “Traversing News with Ant Colony Optimisation and Negative Pheromones” [PDF], accepted as preprint for oral presentation at the European Conference on Complex SystemsECCS14 in Lucca, Sept. 22-26, 2014, Italy.

Abstract: The past decade has seen the rapid development of the online newsroom. News published online are the main outlet of news surpassing traditional printed newspapers. This poses challenges to the production and to the consumption of those news. With those many sources of information available it is important to find ways to cluster and organise the documents if one wants to understand this new system. Traditional approaches to the problem of clustering documents usually embed the documents in a suitable similarity space. Previous studies have reported on the impact of the similarity measures used for clustering of textual corpora [1]. These similarity measures usually are calculated for bag of words representations of the documents. This makes the final document-word matrix high dimensional. Feature vectors with more than 10,000 dimensions are common and algorithms have severe problems with the high dimensionality of the data. A novel bio inspired approach to the problem of traversing the news is presented. It finds Hamiltonian cycles over documents published by the newspaper The Guardian. A Second Order Swarm Intelligence algorithm based on Ant Colony Optimisation was developed [2, 3] that uses a negative pheromone to mark unrewarding paths with a “no-entry” signal. This approach follows recent findings of negative pheromone usage in real ants [4].

In this case study the corpus of data is represented as a bipartite relation between documents and keywords entered by the journalists to characterise the news. A new similarity measure between documents is presented based on the Q-analysis description [5, 6, 7] of the simplicial complex formed between documents and keywords. The eccentricity between documents (two simplicies) is then used as a novel measure of similarity between documents. The results prove that the Second Order Swarm Intelligence algorithm performs better in benchmark problems of the travelling salesman problem, with faster convergence and optimal results. The addition of the negative pheromone as a non-entry signal improves the quality of the results. The application of the algorithm to the corpus of news of The Guardian creates a coherent navigation system among the news. This allows the users to navigate the news published during a certain period of time in a semantic sequence instead of a time sequence. This work as broader application as it can be applied to many cases where the data is mapped to bipartite relations (e.g. protein expressions in cells, sentiment analysis, brand awareness in social media, routing problems), as it highlights the connectivity of the underlying complex system.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Hamiltonian cycles, Text Mining, Textual Corpora, Information Retrieval, Knowledge Discovery, Sentiment Analysis, Q-Analysis, Data Mining, Journalism, The Guardian.

References:

[1] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures on web-page clustering.  In Workshop on Artifcial Intelligence for Web Search (AAAI 2000), pages 58-64, 2000.
[2] David M. S. Rodrigues, Jorge Louçã, and Vitorino Ramos. From standard to second-order Swarm Intelligence  phase-space maps. In Stefan Thurner, editor, 8th European Conference on Complex Systems, Vienna, Austria,  9 2011.
[3] Vitorino Ramos, David M. S. Rodrigues, and Jorge Louçã. Second order Swarm Intelligence. In Jeng-Shyang  Pan, Marios M. Polycarpou, Micha l Wozniak, André C.P.L.F. Carvalho, Hector Quintian, and Emilio Corchado,  editors, HAIS’13. 8th International Conference on Hybrid Artificial Intelligence Systems, volume 8073 of Lecture  Notes in Computer Science, pages 411-420. Springer Berlin Heidelberg, Salamanca, Spain, 9 2013.
[4] Elva J.H. Robinson, Duncan Jackson, Mike Holcombe, and Francis L.W. Ratnieks. No entry signal in ant  foraging (hymenoptera: Formicidae): new insights from an agent-based model. Myrmecological News, 10(120), 2007.
[5] Ronald Harry Atkin. Mathematical Structure in Human A ffairs. Heinemann Educational Publishers, 48 Charles  Street, London, 1 edition, 1974.
[6] J. H. Johnson. A survey of Q-analysis, part 1: The past and present. In Proceedings of the Seminar on Q-analysis  and the Social Sciences, Universty of Leeds, 9 1983.
[7] David M. S. Rodrigues. Identifying news clusters using Q-analysis and modularity. In Albert Diaz-Guilera,  Alex Arenas, and Alvaro Corral, editors, Proceedings of the European Conference on Complex Systems 2013, Barcelona, 9 2013.

In order to solve hard combinatorial optimization problems (e.g. optimally scheduling students and teachers along a week plan on several different classes and classrooms), one way is to computationally mimic how ants forage the vicinity of their habitats searching for food. On a myriad of endless possibilities to find the optimal route (minimizing the travel distance), ants, collectively emerge the solution by using stigmergic signal traces, or pheromones, which also dynamically change under evaporation.

Current algorithms, however, make only use of a positive feedback type of pheromone along their search, that is, if they collectively visit a good low-distance route (a minimal pseudo-solution to the problem) they tend to reinforce that signal, for their colleagues. Nothing wrong with that, on the contrary, but no one knows however if a lower-distance alternative route is there also, just at the corner. On his global search endeavour, like a snowballing effect, positive feedbacks tend up to give credit to the exploitation of solutions but not on the – also useful – exploration side. The upcoming potential solutions can thus get crystallized, and freeze, while a small change on some parts of the whole route, could on the other-hand successfully increase the global result.

Influence of Negative Pheromone in Swarm IntelligenceFigure – Influence of negative pheromone on kroA100.tsp problem (fig.1 – page 6) (values on lines represent 1-ALPHA). A typical standard ACS (Ant Colony System) is represented here by the line with value 0.0, while better results could be found by our approach, when using positive feedbacks (0.95) along with negative feedbacks (0.05). Not only we obtain better results, as we found them earlier.

There is, however, an advantage when a second type of pheromone (a negative feedback one) co-evolves with the first type. And we decided to research for his impact. What we found out, is that by using a second type of global feedback, we can indeed increase a faster search while achieving better results. In a way, it’s like using two different types of evaporative traffic lights, in green and red, co-evolving together. And as a conclusion, we should indeed use a negative no-entry signal pheromone. In small amounts (0.05), but use it. Not only this prevents the whole system to freeze on some solutions, to soon, as it enhances a better compromise on the search space of potential routes. The pre-print article is available here at arXiv. Follows the abstract and keywords:

Vitorino Ramos, David M. S. Rodrigues, Jorge Louçã, “Second Order Swarm Intelligence” [PDF], in Hybrid Artificial Intelligent Systems, Lecture Notes in Computer Science, Springer-Verlag, Volume 8073, pp. 411-420, 2013.

Abstract: An artificial Ant Colony System (ACS) algorithm to solve general purpose combinatorial Optimization Problems (COP) that extends previous AC models [21] by the inclusion of a negative pheromone, is here described. Several Travelling Salesman Problem‘s (TSP) were used as benchmark. We show that by using two different sets of pheromones, a second-order co-evolved compromise between positive and negative feedbacks achieves better results than single positive feedback systems. The algorithm was tested against known NP complete combinatorial Optimization Problems, running on symmetrical TSPs. We show that the new algorithm compares favourably against these benchmarks, accordingly to recent biological findings by Robinson [26,27], and Grüter [28] where “No entry” signals and negative feedback allows a colony to quickly reallocate the majority of its foragers to superior food patches. This is the first time an extended ACS algorithm is implemented with these successful characteristics.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Symmetrical Travelling Salesman Problems (TSP).

Portugal at World Expo 1998 by Vitorino Ramos

Images – Portugal (1A – top left, original input satellite image below), geodesically stretched by one of my Mathematical Morphology algorithms, in order to represent real travel times from each of the 18 regional districts in Portugal, to the rest of the territory.  From the 18, three capital districts are represented here. As departing from Lisbon (1B – top right), from Faro (1C – South of Portugal, bottom left), and from Bragança (1D – North-East region, bottom right). [World Exposition, Lisbon, Territory pavilion, 1998].

Recently one of my colleagues who knows I love maps, pointed me to an old TV show “Câmara Clara“, a cultural TV show by RTP2, at one of the main public Portuguese TV stations. Main reason for my interest was his current theme: Maps. My second reason was their guests: Joaquim Ferreira do Amaral (an ex-Minister with a passion for maps) and Manuel Lima, which wonderful work on information visualization I know for a long time (on one of my past posts I referred to one of his ongoing working sites: visualcomplexity).
 

For my complete and positive surprise, their interview ended with some new examples, being one of my old works referred (from 57m 12s up to 60m 26s on http://camaraclara.rtp.pt/#/arquivo/131 ). It’s a long story on how I ended doing these kind of maps. Part of it, it’s here. During 1998, the World Exposition was in Portugal, and I got invited to present a set of 18 different maps from the Portuguese territory. So I decided to geodesically stretch the travel distances from any of the 18 different capital districts, to the rest of the territory, in order to represent travel Time not Distance, or Distance as time. For that,  I have coded new algorithms based on Mathematical Morphology (MM), taking in account every road (from main roads to regional, check some images below), from which I applied different MM operators.

Unfortunately, many of those maps are now lost. I did tried hard to find them from my old digital archives, but only found those above, which represent the departure from Lisbon (the Capital), Faro and Bragança. So, if by any reason you happen to have some photos from the 1998’s World Exposition in Lisbon, inside the Territory pavilion, I would love to receive them.

Os Portugueses e a Arte dos Mapas - Câmara Clara 131 - Maio 10 2009Video (LINK) – “Câmara Clara” TV show by journalist Paula Moura Pinheiro dedicated to maps (nº 131), at one of the main public Portuguese TV stations (RTP2), broadcasted on May 3 2009, in Portuguese.

A sketchy summary of this TV program went on something like this (the poor translation is mine): At the year Google promises to launch his first and exhaustive world-wide open-access digital cartography of the African continent, Joaquim Ferreira do Amaral, passioned by the Portuguese World Discover History and collector of historical maps, joins as guest with Manuel Lima, the Portuguese information designer that recently Creativity magazine has considered one of the top bright minds along with Google and Amazon founders, debating the importance of “navigating” reality with a map. From the Portuguese cartographic history, know to be the best in the XV and XVI centuries, up to the actual state-of-the-art in this area, from which Manuel Lima is considered to be one of the top researchers at global scale.

Original + Layers Portugal at World Expo 1998 by Vitorino Ramos

Signal Traces - Sept. 2013 Vitorino RamosPhoto – Signal traces, September 2013, Vitorino Ramos.

[…] While pheromone reinforcement plays a role as system’s memory, evaporation allows the system to adapt and dynamically decide, without any type of centralized or hierarchical control […], below.

“[…] whereas signals tends to be conspicuous, since natural selection has shaped signals to be strong and effective displays, information transfer via cues is often more subtle and based on incidental stimuli in an organism’s social environment […]”, Seeley, T.D., “The Honey Bee Colony as a Super-Organism”, American Scientist, 77, pp.546-553, 1989.

[…] If an ant colony on his cyclic way from the nest to a food source (and back again), has only two possible branches around an obstacle, one bigger and the other smaller (the bridge experiment [7,52]), pheromone will accumulate – as times passes – on the shorter path, simple because any ant that sets out on that path will return sooner, passing the same points more frequently, and via that way, reinforcing the signal of that precise branch. Even if as we know, the pheromone evaporation rate is the same in both branches, the longer branch will faster vanish his pheromone, since there is not enough critical mass of individuals to keep it. On the other hand – in what appears to be a vastly pedagogic trick of Mother Nature – evaporation plays a critical role on the society. Without it, the final global decision or the phase transition will never happen. Moreover, without it, the whole colony can never adapt if the environment suddenly changes (e.g., the appearance of a third even shorter branch). While pheromone reinforcement plays a role as system’s memory, evaporation allows the system to adapt and dynamically decide, without any type of centralized or hierarchical control. […], in “Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes“, V. Ramos et al., available as pre-print on arXiV, 2005.

[…] There is some degree of communication among the ants, just enough to keep them from wandering of completely at random. By this minimal communication they can remind each other that they are not alone but are cooperating with team-mates. It takes a large number of ants, all reinforcing each other this way, to sustain any activity – such as trail building – for any length of time. Now my very hazy understanding of the operation of brain leads me to believe that something similar pertains to the firing of neurons… […] in, p. 316, Hofstadter, D.R., “Gödel, Escher, Bach: An Eternal Golden Braid“, New York: Basic Books, 1979).

[…] Since in Self-Organized (SO) systems their organization arises entirely from multiple interactions, it is of critical importance to question how organisms acquire and act upon information [9]. Basically through two forms: a) information gathered from one’s neighbours, and b) information gathered from work in progress, that is, stigmergy. In the case of animal groups, these internal interactions typically involve information transfers between individuals. Biologists have recently recognized that information can flow within groups via two distinct pathways – signals and cues. Signals are stimuli shaped by natural selection specifically to convey information, whereas cues are stimuli that convey information only incidentally [9]. The distinction between signals and cues is illustrated by the difference on ant and deer trails. The chemical trail deposited by ants as they return from a desirable food source is a signal. Over evolutionary time such trails have been moulded by natural selection for the purpose of sharing with nest mates information about the location of rich food sources. In contrast, the rutted trails made by deer walking through the woods is a cue, not shaped by natural selection for communication among deer but are a simple by-product of animals walking along the same path. SO systems are based on both, but whereas signals tends to be conspicuous, since natural selection has shaped signals to be strong and effective displays, information transfer via cues is often more subtle and based on incidental stimuli in an organism’s social environment [45] […], in “Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes“, V. Ramos et al., available as pre-print on arXiV, 2005.

Hybrid Artificial Intelligent Systems HAIS 2013 (pp. 411-420 Second Order Swarm Intelligence)Figure – Hybrid Artificial Intelligent Systems new LNAI (Lecture Notes on Artificial Intelligence) series volume 8073, Springer-Verlag Book [original photo by my colleague David M.S. Rodrigues].

New work, new book. Last week one of our latest works come out published on Springer. Edited by Jeng-Shyang Pan, Marios M. Polycarpou, Emilio Corchado et al. “Hybrid Artificial Intelligent Systems” comprises a full set of new papers on this hybrid area on Intelligent Computing (check the full articles list at Springer). Our new paper “Second Order Swarm Intelligence” (pp. 411-420, Springer books link) was published on the Bio-inspired Models and Evolutionary Computation section.

Fig.1 – (click to enlarge) The optimal shortest path among N=1265 points depicting a Portuguese Navalheira crab as a result of one of our latest Swarm-Intelligence based algorithms. The problem of finding the shortest path among N different points in space is NP-hard, known as the Travelling Salesmen Problem (TSP), being one of the major and hardest benchmarks in Combinatorial Optimization (link) and Artificial Intelligence. (V. Ramos, D. Rodrigues, 2012)

This summer my kids just grab a tiny Portuguese Navalheira crab on the shore. After a small photo-session and some baby-sitting with a lettuce leaf, it was time to release it again into the ocean. He not only survived my kids, as he is now entitled into a new World Wide Web on-line life. After the Shortest path Sardine (link) with 1084 points, here is the Crab with 1265 points. The algorithm just run as little as 110 iterations.

Fig. 2 – (click to enlarge) Our 1265 initial points depicting a TSP Portuguese Navalheira crab. Could you already envision a minimal tour between all these points?

As usual in Travelling Salesmen problems (TSP) we start it with a set of points, in our case 1084 points or cities (fig. 2). Given a list of cities and their pairwise distances, the task is now to find the shortest possible tour that visits each city exactly once. The problem was first formulated as a mathematical problem in 1930 and is one of the most intensively studied problems in optimization. It is used as a benchmark for many optimization methods.

Fig. 3 – (click to enlarge) Again the shortest path Navalheira crab, where the optimal contour path (in black: first fig. above) with 1265 points (or cities) was filled in dark orange.

TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these applications, the concept city represents, for example, customers, soldering points, or DNA fragments, and the concept distance represents travelling times or cost, or a similarity measure between DNA fragments. In many applications, additional constraints such as limited resources or time windows make the problem considerably harder.

What follows (fig. 4) is the original crab photo after image segmentation and just before adding Gaussian noise in order to retrieve several data points for the initial TSP problem. The algorithm was then embedded with the extracted x,y coordinates of these data points (fig. 2) in order for him to discover the minimal path, in just 110 iterations. For extra details, pay a visit onto the Shortest path Sardine (link) done earlier.

Fig. 4 – (click to enlarge) The original crab photo after some image processing as well as segmentation and just before adding Gaussian noise in order to retrieve several data points for the initial TSP problem.

ECCS11 Spatio-Temporal Dynamics on Co-Evolved Stigmergy Vitorino Ramos David M.S. Rodrigues Jorge Louçã

Ever tried to solve a problem where its own problem statement is changing constantly? Have a look on our approach:

Vitorino Ramos, David M.S. Rodrigues, Jorge LouçãSpatio-Temporal Dynamics on Co-Evolved Stigmergy“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

Abstract: Research over hard NP-complete Combinatorial Optimization Problems (COP’s) has been focused in recent years, on several robust bio-inspired meta-heuristics, like those involving Evolutionary Computation (EC) algorithmic paradigms. One particularly successful well-know meta-heuristic approach is based on Swarm Intelligence (SI), i.e., the self-organized stigmergic-based property of a complex system whereby the collective behaviors of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. This line of research recognized as Ant Colony Optimization (ACO), uses a set of stochastic cooperating ant-like agents to find good solutions, using self-organized stigmergy as an indirect form of communication mediated by artificial pheromone, whereas agents deposit pheromone-signs on the edges of the problem-related graph complex network, encompassing a family of successful algorithmic variations such as: Ant Systems (AS), Ant Colony Systems (ACS), Max-Min Ant Systems (MaxMin AS) and Ant-Q.

Albeit being extremely successful these algorithms mostly rely on positive feedback’s, causing excessive algorithmic exploitation over the entire combinatorial search space. This is particularly evident over well known benchmarks as the symmetrical Traveling Salesman Problem (TSP). Being these systems comprised of a large number of frequently similar components or events, the principal challenge is to understand how the components interact to produce a complex pattern feasible solution (in our case study, an optimal robust solution for hard NP-complete dynamic TSP-like combinatorial problems). A suitable approach is to first understand the role of two basic modes of interaction among the components of Self-Organizing (SO) Swarm-Intelligent-like systems: positive and negative feedback. While positive feedback promotes a snowballing auto-catalytic effect (e.g. trail pheromone upgrading over the network; exploitation of the search space), taking an initial change in a system and reinforcing that change in the same direction as the initial deviation (self-enhancement and amplification) allowing the entire colony to exploit some past and present solutions (environmental dynamic memory), negative feedback such as pheromone evaporation ensure that the overall learning system does not stables or freezes itself on a particular configuration (innovation; search space exploration). Although this kind of (global) delayed negative feedback is important (evaporation), for the many reasons given above, there is however strong assumptions that other negative feedbacks are present in nature, which could also play a role over increased convergence, namely implicit-like negative feedbacks. As in the case for positive feedbacks, there is no reason not to explore increasingly distributed and adaptive algorithmic variations where negative feedback is also imposed implicitly (not only explicitly) over each network edge, while the entire colony seeks for better answers in due time.

In order to overcome this hard search space exploitation-exploration compromise, our present algorithmic approach follows the route of very recent biological findings showing that forager ants lay attractive trail pheromones to guide nest mates to food, but where, the effectiveness of foraging networks were improved if pheromones could also be used to repel foragers from unrewarding routes. Increasing empirical evidences for such a negative trail pheromone exists, deployed by Pharaoh’s ants (Monomorium pharaonis) as a ‘no entry‘ signal to mark unrewarding foraging paths. The new algorithm comprises a second order approach to Swarm Intelligence, as pheromone-based no entry-signals cues, were introduced, co-evolving with the standard pheromone distributions (collective cognitive maps) in the aforementioned known algorithms.

To exhaustively test his adaptive response and robustness, we have recurred to different dynamic optimization problems. Medium-size and large-sized dynamic TSP problems were created. Settings and parameters such as, environmental upgrade frequencies, landscape changing or network topological speed severity, and type of dynamic were tested. Results prove that the present co-evolved two-type pheromone swarm intelligence algorithm is able to quickly track increasing swift changes on the dynamic TSP complex network, compared to standard algorithms.

Keywords: Self-Organization, Stigmergy, Co-Evolution, Swarm Intelligence, Dynamic Optimization, Foraging, Cooperative Learning, Combinatorial Optimization problems, Dynamical Symmetrical Traveling Salesman Problems (TSP).


Fig. – Recovery times over several dynamical stress tests at the fl1577 TSP problem (1577 node graph) – 460 iter max – Swift changes at every 150 iterations (20% = 314 nodes, 40% = 630 nodes, 60% = 946 nodes, 80% = 1260 nodes, 100% = 1576 nodes). [click to enlarge]

ECCS11 From Standard to Second Order Swarm Intelligence Phase-Space Maps David Rodrigues Jorge Louçã Vitorino Ramos

David M.S. Rodrigues, Jorge Louçã, Vitorino Ramos, “From Standard to Second Order Swarm Intelligence Phase-space maps“, in European Conference on Complex Systems, ECCS’11, Vienna, Austria, Sept. 12-16 2011.

Abstract: Standard Stigmergic approaches to Swarm Intelligence encompasses the use of a set of stochastic cooperating ant-like agents to find optimal solutions, using self-organized Stigmergy as an indirect form of communication mediated by a singular artificial pheromone. Agents deposit pheromone-signs on the edges of the problem-related graph to give rise to a family of successful algorithmic approaches entitled Ant Systems (AS), Ant Colony Systems (ACS), among others. These mainly rely on positive feedback’s, to search for an optimal solution in a large combinatorial space. The present work shows how, using two different sets of pheromones, a second-order co-evolved compromise between positive and negative feedback’s achieves better results than single positive feedback systems. This follows the route of very recent biological findings showing that forager ants, while laying attractive trail pheromones to guide nest mates to food, also gained foraging effectiveness by the use of pheromones that repelled foragers from unrewarding routes. The algorithm presented here takes inspiration precisely from this biological observation.

The new algorithm was exhaustively tested on a series of well-known benchmarks over hard NP-complete Combinatorial Optimization Problems (COP’s), running on symmetrical Traveling Salesman Problems (TSP). Different network topologies and stress tests were conducted over low-size TSP’s (eil51.tsp; eil78.tsp; kroA100.tsp), medium-size (d198.tsp; lin318.tsp; pcb442.tsp; att532.tsp; rat783.tsp) as well as large sized ones (fl1577.tsp; d2103.tsp) [numbers here referring to the number of nodes in the network]. We show that the new co-evolved stigmergic algorithm compared favorably against the benchmark. The algorithm was able to equal or majorly improve every instance of those standard algorithms, not only in the realm of the Swarm Intelligent AS, ACS approach, as in other computational paradigms like Genetic Algorithms (GA), Evolutionary Programming (EP), as well as SOM (Self-Organizing Maps) and SA (Simulated Annealing). In order to deeply understand how a second co-evolved pheromone was useful to track the collective system into such results, a refined phase-space map was produced mapping the pheromones ratio between a pure Ant Colony System (where no negative feedback besides pheromone evaporation is present) and the present second-order approach. The evaporation rate between different pheromones was also studied and its influence in the outcomes of the algorithm is shown. A final discussion on the phase-map is included. This work has implications in the way large combinatorial problems are addressed as the double feedback mechanism shows improvements over the single-positive feedback mechanisms in terms of convergence speed and on major results.

Keywords: Stigmergy, Co-Evolution, Self-Organization, Swarm Intelligence, Foraging, Cooperative Learning, Combinatorial Optimization problems, Symmetrical Traveling Salesman Problems (TSP), phase-space.

Fig. – Comparing convergence results between Standard algorithms vs. Second Order Swarm Intelligence, over TSP fl1577 (click to enlarge).

Figure – Application of Mathematical Morphology openings and closing operators of increasing size on different digital images (from Fig. 2, page 5).

[] Vitorino Ramos, Pedro Pina, Exploiting and Evolving R{n} Mathematical Morphology Feature Spaces, in Ronse Ch., Najman L., Decencière E. (Eds.), Mathematical Morphology: 40 Years On, pp. 465-474, Springer Verlag, Dordrecht, The Netherlands, 2005.

(abstract) A multidisciplinary methodology that goes from the extraction of features till the classification of a set of different Portuguese granites is presented in this paper. The set of tools to extract the features that characterize the polished surfaces of granites is mainly based on mathematical morphology. The classification methodology is based on a genetic algorithm capable of search for the input feature space used by the nearest neighbor rule classifier. Results show that is adequate to perform feature reduction and simultaneous improve the recognition rate. Moreover, the present methodology represents a robust strategy to understand the proper nature of the textures studied and their discriminant features.

(to obtain the respective PDF file follow link above or visit chemoton.org)

Fig.1 – (click to enlarge) The optimal shortest path among N=1084 points depicting a Portuguese sardine as a result of one of our latest Swarm-Intelligence based algorithms. The problem of finding the shortest path among N different points in space is NP-hard, known as the Travelling Salesmen Problem (TSP), being one of the major and hardest benchmarks in Combinatorial Optimization (link) and Artificial Intelligence. (D. Rodrigues, V. Ramos, 2011)

Almost summer time in Portugal, great weather as usual, and the perfect moment to eat sardines along with friends in open air esplanades; in fact, a lot of grilled sardines. We usually eat grilled sardines with a tomato-onion salad along with barbecued cherry peppers in salt and olive oil. That’s tasty, believe me. But not tasty enough however for me and one of my colleagues, David Rodrigues (blog link/twitter link). We decided to take this experience a little further on, creating the first shortest path sardine.

Fig. 2 – (click to enlarge) Our 1084 initial points depicting a TSP Portuguese sardine. Could you already envision a minimal tour between all these points?

As usual in Travelling Salesmen problems (TSP) we start it with a set of points, in our case 1084 points or cities (fig. 2). Given a list of cities and their pairwise distances, the task is now to find the shortest possible tour that visits each city exactly once. The problem was first formulated as a mathematical problem in 1930 and is one of the most intensively studied problems in optimization. It is used as a benchmark for many optimization methods. TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, such as DNA sequencing. In these applications, the concept city represents, for example, customers, soldering points, or DNA fragments, and the concept distance represents travelling times or cost, or a similarity measure between DNA fragments. In many applications, additional constraints such as limited resources or time windows make the problem considerably harder. (link)

Fig. 3 – (click to enlarge) A well done and quite grilled shortest path sardine, where the optimal contour path (in blue: first fig. above) with 1084 points was filled in black colour. Nice T-shirt!

Even for toy-problems like the present 1084 TSP sardine, the amount of possible paths are incredible huge. And only one of those possible paths is the optimal (minimal) one. Consider for example a TSP with N=4 cities, A, B, C, and D. Starting in city A, the number of possible paths is 6: that is 1) A to B, B to C, C to D, and D to A, 2) A-B, B-D, D-C, C-A, 3) A-C, C-B, B-D and D-A, 4) A-C, C-D, D-B, and B-A, 5) A-D, D-C, C-B, and B-A, and finally 6) A-D, D-B, B-C, and C-A. I.e. there are (N1)! [i.e., N1 factorial] possible paths. For N=3 cities, 2×1=2 possible paths, for N=4 cities, 3x2x1=6 possible paths, for N=5 cities, 4x3x2x1=24 possible paths, … for N=20 cities, 121.645.100.408.832.000 possible paths, and so on.

The most direct solution would be to try all permutations (ordered combinations) and see which one is cheapest (using computational brute force search). The running time for this approach however, lies within a polynomial factor of O(n!), the factorial of the number of cities, so this solution becomes impractical even for only 20 cities. One of the earliest and oldest applications of dynamic programming is the Held–Karp algorithm which only solves the problem in time O(n22n).

In our present case (N=1084) we have had to deal with 1083 factorial possible paths, leading to the astronomical number of 1.19×102818 possible solutions. That’s roughly 1 followed by 2818 zeroes! – better now to check this Wikipedia entry on very large numbers. Our new Swarm-Intelligent based algorithm, running on a normal PC was however, able to formulate a minimal solution (fig.1) within just several minutes. We will soon post more about our novel self-organized stigmergic-based algorithmic approach, but meanwhile, if you enjoyed these drawings, do not hesitate in asking us for a grilled cherry pepper as well. We will be pleased to deliver you one by email.

p.s. – This is a joint twin post with David Rodrigues.

Fig. 4 – (click to enlarge) Zoom at the end sardine tail optimal contour path (in blue: first fig. above) filled in black, from a total set of 1084 initial points.

For some seconds, just imagine if bacteria had Twitter… As new research suggests microbial life can – in fact – be even richer: highly social, intricately networked, and teeming with interactions. So it’s probably time for you to say hello to… several trillion of your inner body friends. So much so, that the metabolic activity performed by these bacteria is equal to that of a virtual organ, leading to gut bacteria being termed a “forgotten” organ [O’Hara and Shanahan, “The gut flora as a forgotten organ“. EMBO reports 7, 688 – 693 (01 Jul 2006)]. My question however is, are they doing all these going beyond regular communication?

Flocks of migrating birds and schools of fish are familiar examples of spatial self-organized patterns formed by living organisms through social foraging. Such aggregation patterns are observed not only in colonies of organisms as simple as single-cell bacteria, as interesting as social insects like ants and termites as well as in colonies of multi-cellular vertebrates as complex as birds and fish but also in human societies [14]. Wasps, bees, ants and termites all make effective use of their environment and resources by displaying collective swarm intelligence. For example, termite colonies build nests with a complexity far beyond the comprehension of the individual termite, while ant colonies dynamically allocate labor to various vital tasks such as foraging or defence without any central decision-making ability [8,53].(*)

Slime mould is another perfect example. These are very simple cellular organisms with limited motile and sensory capabilities, but in times of food shortage they aggregate to form a mobile slug capable of transporting the assembled individuals to a few feeding area. Should food shortage persist, they then form into a fruiting body that disperses their spores using the wind, thus ensuring the survival of the colony [30,44,53]. New research suggests that microbial life can be even richer: highly social, intricately networked, and teeming with interactions [47]. Bassler [3] and other researchers have determined that bacteria communicate using molecules comparable to pheromones. By tapping into this cell-to-cell network, microbes are able to collectively track changes in their environment, conspire with their own species, build mutually beneficial alliances with other types of bacteria, gain advantages over competitors, and communicate with their hosts – the sort of collective strategizing typically ascribed to bees, ants, and people, not to bacteria. Eshel Ben-Jacob [6] indicate that bacteria have developed intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively self-organize into highly structured colonies with elevated environmental adaptability, proposing that they maintain linguistic communication. Meaning-based communication permits colonial identity, intentional behavior (e.g. pheromone-based courtship for mating), purposeful alteration of colony structure (e.g. formation of fruiting bodies), decision-making (e.g. to sporulate) and the recognition and identification of other colonies – features we might begin to associate with a bacterial social intelligence. Such a social intelligence, should it exist, would require going beyond communication to encompass unknown additional intracellular processes to generate inheritable colonial memory and commonly shared genomic context. Moreover, Eshel [5,4] argues that colonies of bacteria are able to communicate and even alter their genetic makeup in response to environmental challenges, asserting that the lowly bacteria colony is capable of computing better than the best computers of our time, and attributes to them properties of creativity, intelligence, and even self-awareness.(*)

These self-organizing distributed capabilities were also found in plants. Peak and co-workers [37,2] point out that plants may regulate their uptake and loss of gases by distributed computation – using information processing that involves communication between many interacting units (their stomata). As described by Ball [2], leaves have openings called stomata that open wide to let CO2 in, but close up to prevent precious water vapour from escaping. Plants attempt to regulate their stomata to take in as much CO2 as possible while losing the least amount of water. But they are limited in how well they can do this: leaves are often divided into patches where the stomata are either open or closed, which reduces the efficiency of CO2 uptake. By studying the distributions of these patches of open and closed stomata in leaves of the cocklebur plant, Peak et al. [37] found specific patterns reminiscent of distributed computing. Patches of open or closed stomata sometimes move around a leaf at constant speed, for example. What’s striking is that it is the same form of mechanism that is widely thought to regulate how ants forage. The signals that each ant sends out to other ants, by laying down chemical trails of pheromone, enable the ant community as a whole to find the most abundant food sources. Wilson [54] showed that ants emit specific pheromones and identified the chemicals, the glands that emitted them and even the fixed action responses to each of the various pheromones. He found that pheromones comprise a medium for communication among the ants, allowing fixed action collaboration, the result of which is a group behaviour that is adaptive where the individual’s behaviours are not.(*)

In the offing… we should really look and go beyond regular communication to encompass unknown additional intracellular processes.

(*) excerpts from V. Ramos et al.: [a] Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes. (pdf) / [b] Computational Chemotaxis in Ants and Bacteria over Dynamic Environments. (pdf) / [c] (pdf) Societal Implicit Memory and his Speed on Tracking Dynamic Extrema. (pdf)

Swarm Intelligence (SI) is the property of a system whereby the collective behaviours of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. SI provides a basis with which it is possible to explore collective (or distributed) problem solving without centralized control or the provision of a global model. To tackle the formation of a coherent social collective intelligence from individual behaviours, we discuss several concepts related to Self-Organization, Stigmergy and Social Foraging in animals. Then, in a more abstract level we suggest and stress the role played not only by the environmental media as a driving force for societal learning, as well as by positive and negative feedbacks produced by the many interactions among agents. Finally, presenting a simple model based on the above features, we will address the collective adaptation of a social community to a cultural (environmental, contextual) or media informational dynamical landscape, represented here – for the purpose of different experiments – by several three-dimensional mathematical functions that suddenly change over time. Results indicate that the collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes. [in V.Ramos et al., Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes]

(to obtain the respective PDF file follow link above or visit chemoton.org)

[…] Cuenta la leyenda que segundos antes de llegar a una curva, Juan Manuel Fangio dirigía una fugaz mirada a las hojas de los árboles. Si se movían, levantaba el pie del acelerador; si, por el contrario, no soplaba el viento, pisaba a fondo. […], in Ángel Luis Menéndez, “Los abuelos de Alonso”, Público.es (link)

Figure – A swarm cognitive map (pheromone spatial distribution map) in 3D, at a specific time t. The artificial ant colony was evolved within 2 digital grey images based on the following work. The real physical “thing” can be seen here.

[] Vitorino Ramos, The MC2 Project [Machines of Collective Conscience]: A possible walk, up to Life-like Complexity and Behaviour, from bottom, basic and simple bio-inspired heuristics – a walk, up into the morphogenesis of information, UTOPIA Biennial Art Exposition, Cascais, Portugal, July 12-22, 2001.

Synergy (from the Greek word synergos), broadly defined, refers to combined or co-operative effects produced by two or more elements (parts or individuals). The definition is often associated with the holistic conviction quote that “the whole is greater than the sum of its parts” (Aristotle, in Metaphysics), or the whole cannot exceed the sum of the energies invested in each of its parts (e.g. first law of thermodynamics) even if it is more accurate to say that the functional effects produced by wholes are different from what the parts can produce alone. Synergy is a ubiquitous phenomena in nature and human societies alike. One well know example is provided by the emergence of self-organization in social insects, via direct (mandibular, antennation, chemical or visual contact, etc) or indirect interactions. The latter types are more subtle and defined as stigmergy to explain task coordination and regulation in the context of nest reconstruction in Macrotermes termites. An example, could be provided by two individuals, who interact indirectly when one of them modifies the environment and the other responds to the new environment at a later time. In other words, stigmergy could be defined as a particular case of environmental or spatial synergy. Synergy can be viewed as the “quantity” with respect to which the whole differs from the mere aggregate. Typically these systems form a structure, configuration, or pattern of physical, biological, sociological, or psychological phenomena, so integrated as to constitute a functional unit with properties not derivable from its parts in summation (i.e. non-linear) – Gestalt in one word (the English word more similar is perhaps system, configuration or whole). The system is purely holistic, and their properties are intrinsically emergent and auto-catalytic.

A typical example could be found in some social insect societies, namely in ant colonies. Coordination and regulation of building activities on these societies do not depend on the workers themselves but are mainly achieved by the nest structure: a stimulating configuration triggers the response of a termite worker, transforming the configuration into another configuration that may trigger in turn another (possibly different) action performed by the same termite or any other worker in the colony. Recruitment of social insects for particular tasks is another case of stigmergy. Self-organized trail laying by individual ants is a way of modifying the environment to communicate with nest mates that follow such trails. It appears that task performance by some workers decreases the need for more task performance: for instance, nest cleaning by some workers reduces the need for nest cleaning. Therefore, nest mates communicate to other nest mates by modifying the environment (cleaning the nest), and nest mates respond to the modified environment (by not engaging in nest cleaning).

Swarms of social insects construct trails and networks of regular traffic via a process of pheromone (a chemical substance) laying and following. These patterns constitute what is known in brain science as a cognitive map. The main differences lies in the fact that insects write their spatial memories in the environment, while the mammalian cognitive map lies inside the brain, further justified by many researchers via a direct comparison with the neural processes associated with the construction of cognitive maps in the hippocampus.

But by far more crucial to the present project, is how ants form piles of items such as dead bodies (corpses), larvae, or grains of sand. There again, stigmergy is at work: ants deposit items at initially random locations. When other ants perceive deposited items, they are stimulated to deposit items next to them, being this type of cemetery clustering organization and brood sorting a type of self-organization and adaptive behaviour, being the final pattern of object sptial distribution a reflection of what the colony feels and thinks about that objects, as if they were another organism (a meta- global organism).

As forecasted by Wilson [E.O. Wilson. The Insect Societies, Belknam Press, Cambridge, 1971], our understanding of individual insect behaviour together with the sophistication with which we will able to analyse their collective interaction would advance to the point were we would one day posses a detailed, even quantitative, understanding of how individual “probability matrices” (their tendencies, feelings and inner thoughts) would lead to mass action at the level of the colony (society), that is a truly “stochastic theory of mass behaviour” where the reconstruction of mass behaviours is possible from the behaviours of single colony members, and mainly from the analysis of relationships found at the basic level of interactions.

The idea behind the MC2 Machine is simple to transpose for the first time, the mammalian cognitive map, to a environmental (spatial) one, allowing the recognition of what happens when a group of individuals (humans) try to organize different abstract concepts (words) in one habitat (via internet). Even if each of them is working alone in a particular sub-space of that “concept” habitat, simply rearranging notions at their own will, mapping “Sameness” into “Neighborness“, not recognizing the whole process occurring simultaneously on their society, a global collective-conscience emerges. Clusters of abstract notions emerge, exposing groups of similarity among the different concepts. The MC2 machine is then like a mirror of what happens inside the brain of multiple individuals trying to impose their own conscience onto the group.

Through a Internet site reflecting the “words habitat”, the users (humans) choose, gather and reorganize some types of words and concepts. The overall movements of these word-objects are then mapped into a public space. Along this process, two shifts emerge: the virtual becomes the reality, and the personal subjective and disperse beliefs become onto a social and politically significant element. That is, perception and action only by themselves can evolve adaptive and flexible problem-solving mechanisms, or emerge communication among many parts. The whole and their behaviours (i.e., the next layer in complexity – our social significant element) emerges from the relationship of many parts, even if these later are acting strictly within and according to any sub-level of basic and simple strategies, ad-infinitum repeated.

The MC2 machine will reveal then what happens in many real world situations; cooperation among individuals, altruism, egoism, radicalism, and also the resistance to that radicalism, memory of that society on some extreme positions on time, but the inevitable disappearance of that positions, to give rise to the convergence to the group majority thought (Common-sense?), eliminating good or bad relations found so far, among in our case, words and abstract notions. Even though the machine composed of many human-parts will “work” within this restrict context, she will reveal how some relationships among notions in our society (ideas) are only possible to be found, when and only when simple ones are found first (the minimum layer of complexity), neglecting possible big steps of a minority group of visionary individuals. Is there (in our society) any need for a critical mass of knowledge, in order to achieve other layers of complexity? Roughly, she will reveal for instance how democracies can evolve and die on time, as many things in our impermanent world.

It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change“. Charles Darwin (On the Origin of Species, Nov. 1859)

During the Victorian era where high prudery and morality were constant, it would be hard to imagine seeing Charles Darwin wearing a Scottish-kilt. In fact, men’s formal clothing was less colourful than it was in the previous century, while women’s tight-fitting jersey dresses of the 1880s covered the body, leaving little to the imagination (source). There is however, one beautiful – as in strict sense of delighting the senses for exciting intellectual or emotional admiration – reason, I think he should have done it (!), regardless the  obvious bearing consequences of a severe Victorian society. Surprisingly, some how, that reason is linked to cheetahs chasing gazelles, among many other things…

As the image of Charles Darwin wearing a kilt, you will probably find these awkward too, but when a cheetah chases a gazelle, banded tartan Scottish-kilt woven textile like patterns soon start to pop-up everywhere. Not at the ground terrain level, of course. Instead, they appear as a phenotype-like map between your present and the past. You may think that this banded tartans will have no significance for your life, but do mind this: crying babies do it all the time with their mommy’s and fathers, companies do it with other companies in their regular business, people commuting in large cities do it over large highways, human language, literature and culture does it, friends do it, PC virus and anti-virus software do it, birds singing do it also, … and even full countries at war do it.

One extreme example is the Cold War, where for the first time on our Human history, co-evolutionary arms-race raised to unprecedented levels. Co-Evolution is indeed the right common key-word for all these phenomena, while large white banded strips punctuated by tiny black ones (bottom-left woven kilt above), would be the perfect correspondent tartan pattern for the case of the Cold War example mentioned. But among these, there is of course, much more Scottish-kilt like patterns we could find. Ideas, like over this TV ad above, co-evolve too. Here, the marketeer decided to co-evolve with a previous popular famous meme image: Sharon Stone crossing his legs at the 1992 ‘Basic Instinctmovie. In fact, there is an authentic plethora of different possible behavioural patterns. Like a fingerprint (associated with different Gaelic clans), each of these patterns correspond to a lineage of current versus ancestral strategies, trying to solve a specific problem, or achieving one precise goal. But as the strategic landscape is dynamically changing all the time, a good question is, how can we visualize it. And, above all, what vital information and knowledge could we retrieve from this evolutionary Scottish-kilts maps.

Fig. – The frontispiece drawing to the English edition of Ernst Haeckel‘s Evolution of Man (trans. 1903) presents a skull labelled “Australian Negro” as an intervening evolutionary stage between the “Mediterranean” skull and those of the lower primates (from the 1891 ed. of the Anthropogenie).

In nature, organisms and species coexist in an ecosystem, where each species has its own place or niche in the system. The environment contains a limited number and amount of resources, and the various species must compete for access to those resources, where successive adaptations in one group put pressure on another group to catch up (e.g., the coupled phenomena of speed in the cheetah and evasive agility in the gazelle). Through these interactions, species grow and change, each influencing the others evolutionary development [7]. This process of bi-adaptive relationship (in some cases can also assume a form of cooperation and mutualism) or reciprocal adaptation is know as Co-evolution, i.e. the evolution of two or more competing populations with coupled fitness.

The phenomena has several interesting features that may potentially enhance the adaptive power of artificial evolution [7], or  other types of bio-inspired learning systems. In particular, competing populations may reciprocally drive one another to increasing levels of complexity by producing an evolutionary “arms race”, where each group may become bigger, faster, more lethal, more intelligent, etc. Co-Evolution can then happen either between a learner (e.g., single population) and its environment (i.e. based on competitions among individuals in the population) or between learning species (two populations evolving), where the fitness of individuals is based on their behaviour in the context of the individuals of the other population [7]. This latter type of co-evolutionary search is often described as “host-parasite”, or “predator-prey” co-evolution. A good example and application of co-evolutionary learning include the pioneering work by Hillis in 1990 [1] on sorting networks.

It can occur at multiple levels of biology: it can be as microscopic as correlated mutations between amino acids in a protein, or as macroscopic as co-varying traits between different species in an environment. Being biological Co-Evolution, in a broad sense, “the change of a biological object triggered by the change of a related object” [2], his visualization however, could be profoundly hard. In fact, attempting to define and monitor “progress” in the context of Co-Evolutionary systems can be a somewhat nightmarish experience , as stated in [4]. It’s exactly here where Scottish-kilts come into play.

In 1995 [3], two researchers had a simple, yet powerful idea. In order to monitor the dynamics of artificial competitive co-evolutionary systems between two populations, Dave Cliff and Geoffrey Miller [3,4,5] proposed evaluating the performance of an individual from the current population in a series of trials against opponents from all previous generations. while visualizing the results as 2D grids of shaded cells or pixels: qualitative patterns in the shading can thus indicate different classes of co-evolutionary dynamic. Since their technique involves pitting a Current Individual (CI) against Ancestral Opponents (AO), they referred to the visualizations as CIAO plots (fig. above [3]).

Important Co-Evolutionary dynamics such as limited evolutionary memory, “Red Queen” effects or intransitive dominance cycling, will then be revealed like a fingerprint as certain qualitative patterns. Dominance cycling, for instance, it’s a major factor on Co-Evolution, wish could appear or not, during the entire co-evolutionary process. Imagine, for instance, 3 individuals (A,B,C) or strategies. Like over the well known “Rock, Paper, Scissors” game, strategy B could beat strategy A, strategy C could beat B, and strategy A could beat C, over and over in an eternal cycling, where only “arms race” specialized learning will emerge, at the cost of a limited learning generalization against a possible fourth individual-strategy D. If you play poker, you certainly know what I am talking about, since 2 poker players are constantly trying to broke this behavioural cycle, or entering it, depending on their so-far success.

Above (left and right figures – [3]), two idealised typical CIAO plot patterns can be observed, where darker shading denotes higher scores. On the left figure, however, co-evolutionary intransitive dominance cycling is a constant, where current elites (population A elites) score highly against population B opponents from 3, 8 and 13 generations ago, but not so well against generations in between. On the other hand (right figure), the behavioural pattern is completely different: over here we do observe limited evolutionary memory, where the current elites do well against opponents from 3,4 and 5 generations ago, but much less well against more distant ancestral opponents.

For to win one hundred victories in one hundred battles is not the acme of skill. To subdue the enemy without fighting is the acme of skill.” ~ Sun Tzu

Of course, in increasingly complex real-world situations Scottish-kilt like CIAO plots are much noisy than this (fig. above -[7]) where banded tartans could be less prominent, while the same could happen in irregular dominance cycling as elegantly showed by Cartlidge and Bullock in 2004 [6]. Above, some of my own experiences can be observed (submitted work). Over here I decided to co-evolve a AI agent strategy to play against a pool of 15 different strategies (6 of those confronts are presented above), and as a result, 6 different behavioural patterns emerged between them. All in all, the full spectrum of co-evolving dynamics could be observed, from the “Red Queen” effect, till alternate dominant cycles, and limited or long evolutionary memory. Even if some dynamics seem counter-productive in one-by-one confronts, in fact, all of these dynamics are useful in some way, as when you play Poker or the “Rock, Paper, Scissors” game. A typical confront between game memory (exploitation) and the ability to generalize (exploration). Where against precise opponents limited evolutionary memory was found, the same effect produced dominant cycles or long evolutionary memory against other strategies. The idea of course, is not to co-evolve a super-strategy to win all one-by-one battles (something that would be rather impossible; e.g. No free Lunch Theorem) but instead to win the whole round-robin tournament, by being highly adaptive and/or exaptive.

So next time you see someone wearing a banded tartan Scottish-kilt do remind yourself that, while getting trapped in traffic, that precise pattern could be the result of your long year co-evolved strategies to find the quickest way home, while confronting other commuters doing the same. And that, somewhere, somehow, Charles Darwin is envying your observations…

.

[1] W. Daniel Hillis (1990), “Co-Evolving Parasites improve Simulated Evolution as an Optimization Procedure”, Physica D, Vol. 42, pp. 228-234 (later in, C. Langton et al. (Eds.) (1992), Procs. Artificial Life II, Addison-Welsey, pp. 313-324).

[2] Yip et al.; Patel, P; Kim, PM; Engelman, DM; McDermott, D; Gerstein, M (2008). “An integrated system for studying residue Coevolution in Proteins“. Bioinformatics 24 (2): 290-292. doi:10.1093/bioinformatics/btm584. PMID 18056067.

[3] Dave Cliff, Geoffrey F. Miller, (1995), “Tracking the Red Queen: Methods for measuring co-evolutionary progress in open-ended simulations“. In F. Moran, A. Moreno, J. J. Merelo, & P. Cachon (Eds.), Advances in artificial life: Proceedings of the Third European Conference on Artificial Life (pp. 200-218). Berlin: Springer-Verlag.

[4] Dave Cliff, Geoffrey F. Miller, (2006), “Visualizing Co-Evolution with CIAO plots“, Artificial Life, 12(2), 199-202

[5] Dave Cliff, Geoffrey F. Miller (1996). “Co-evolution of pursuit and evasion II: Simulation methods and results“. In P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, & S. W. Wilson (Eds.), From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior (pp. 506-515). Cambridge, MA: MIT Press.

[6] Cartlidge, J. and Bullock S., (2004), “Unpicking Tartan CIAO plots: Understanding irregular Co-Evolutionary Cycling“, Adaptive Behavior Journal, 12: 69-92, 2004.

[7] Ramos, Vitorino, (2007), “Co-Cognition, Neural Ensembles and Self-Organization“, extended abstract for a seminar talk at ISR – Institute for Systems and Robotics, Technical Univ. of Lisbon (IST), Lisbon, PORTUGAL. May 31, 2007.

Figure – Web Usage Mining of Monash’s Univ. web site using self-organized ant-based clustering (initial and final classification maps). Web usage Data was collected from the Monash University’s Web site (Australia), with over 7 million hits every week.

[] Vitorino Ramos, Ajith Abraham, Evolving a Stigmergic Self-Organized Data-Mining, in ISDA-04, 4th Int. Conf. on Intelligent Systems, Design and Applications, Budapest, Hungary, ISBN 963-7154-30-2, pp. 725-730, August 26-28, 2004.

Self-organizing complex systems typically are comprised of a large number of frequently similar components or events. Through their process, a pattern at the global-level of a system emerges solely from numerous interactions among the lower-level components of the system. Moreover, the rules specifying interactions among the system’s components are executed using only local information, without reference to the global pattern, which, as in many real-world problems is not easily accessible or possible to be found. Stigmergy, a kind of indirect communication and learning by the environment found in social insects is a well know example of self-organization, providing not only vital clues in order to understand how the components can interact to produce a complex pattern, as can pinpoint simple biological non-linear rules and methods to achieve improved artificial intelligent adaptive categorization systems, critical for Data-Mining. On the present work it is our intention to show that a new type of Data-Mining can be designed based on Stigmergic paradigms, taking profit of several natural features of this phenomenon. By hybridizing bio-inspired Swarm Intelligence with Evolutionary Computation we seek for an entire distributed, adaptive, collective and cooperative self-organized Data-Mining. As a real-world / real-time test bed for our proposal, World-Wide-Web Mining will be used. Having that purpose in mind, Web usage Data was collected from the Monash University’s Web site (Australia), with over 7 million hits every week. Results are compared to other recent systems, showing that the system presented is by far promising.

(to obtain the respective PDF file follow link above or visit chemoton.org)

Journalism is dying, they say. I do agree. And while the argue continues, many interested on the issue are now debating what really is the reason. The question is…, there is no reason at all, there are many. Intricate ones. Do ponder on this: while newspapers are facing the immense omnipresent and real-time competition from TV channels, TV on itself is dying also (while unexpectedly, … Radio is surging). On many broadcasted programs, TV anchors are now more important than the invited people who, on that subject (supposedly) worked hardly over years to provide that precise innovative content. As in large supermarkets and great malls, package by these means have turned more important than the content in itself. This related business editorial pressure for news quickness have become so intensive and aggressive, that contents are replaced every second without judge and once in the air hardly described, discussed,  opposed or dessicated. So at large,  TV CEO’s producers think that people are no longer waiting for a new interesting content to appear, they are instead waiting for the anchor which passes them down as they were peanuts. Peanuts are good, but in excess – we all agree – are damn awful. And many do so,  as an old passive addiction. Which means that in the long run, nothing remains (fact for both sides); … And if they give me no opportunity at all to check content carefully, if I happen to be on the mood to, … So, I move on. Buy this precise simple way, media cannibalizes itself.

We all know that attention spam is getting narrower these days, and, e.g., yes… greater literature classics are no longer read. So, Media CEO’s say – “they have no time“. But, really … do mind that gap. Think twice. If the whole environment suddenly recognizes (being this one of the major questions – see below) that they are getting enough of peanuts (and they really are), they will urge for beef-steaks. In fact, eating 1000 void peanuts takes more time to consume than one large good beef! And there is a difference, … the beef remains on our body for several hours, not seconds.

It’s promptly becoming a paradox, since Media CEO’s on their blindness competition refuge on saying that they – us readers – have no time (when in mediocrity no solution is found, easiest way is to repeat a mantra), and we (mostly of us) keep zapping news as never before. However, they never realized that we keep zapping it, because no news – by these means –  are of interest. They really all have become the same. And once they appear all the same, they all soon disappear from our minds. … We all in some aspects all wonder, what  really happened to  research journalism, stories about new complex issues, strong content, explained in detail but still provided in simple eloquent ways? Come on, this long-tailed huge market niche, once yours, is now void!

Newspapers do have this wonderful singularity. They still have journalists (at least some, if they had enough vision to nourish them). They could provide insightful detailed backup stories, open questions, or debating new ones as no one can in public space. Moreover, they have time from their consumers. That, at least, is what I am feed-backing to Guardian every Sunday when I put my money over the news bench in change for this newspaper, along others like The Economist. But in face of these overall great news-without-sense turmoil cascade, probably one of these days, people will instead desire silence… or listening to their grandfathers knowledge, good-sense, and long-lived emotion (which keeps increasing believe me). They will relate to him, as never before.  Not newspapers. At least, he do provides content.

But once the media is set (and in some way, not all the way, medium is the message, as postulated by Marshall McLuhan), the great gold-run will be on, … guess what, … content. And on relationships among content! Journalism will be no longer under atomization. Or crystallized.

Fig. – Spatial distribution of 931 items (words taken from an article at ABC Spanish newspaper) on a 61 x 61 non-parametric toroidal grid, at t=106. 91 ants used type 2 probability response functions, with k1=0.1 and k2=0.3. Some independent clusters examples are: (A) anunció, bilbao, embargo, titulos, entre, hacer, necesídad, tras, vida, lider, cualquier, derechos, medida.(B) dirigentes, prensa, ciu. (C) discos, amigos, grandes. (D) hechos, piloto, miedo, tipo, cd, informes. (E) dificil, gobierno, justicia, crisis, voluntad, creó, elección, horas, frente, técnica, unas, tarde, familia, sargento, necesídad, red, obra … (among other word semantic clusters; check paper article below).

For long, media decided to do nothing, while new media including social media was coming in to the plateu, stronger as never before. Let me give you one example. In order to understand how relations between item news could enhnace newspaper reading and social awareness, back in 2002 I decided to make an experiment. Together with a colleague, we took one article of the Spanish ABC magazine (photo above). The article was about spanish political parties and corruption. It contained 931words (snapshot above). In order to extract semantic meaning from it as a pre-processing computer analysis, we started by applying Latent Semantic Analysis (LSA). Then, Swarm Intelligent algorithms were developed in order to have a glimpse on the relations among all those words on the newspaper article. Guess what? Some words like “big”, friends” and “music discs” were segmented from the rest of the political related article (segregated it on a remote semantic “island”), that is, not only a whole conceptual semantic atlas of that entire news section was possible, as well as finding unrelated issues (which were uncorrelated semantic “islands”). Now, just imagine if this happens within a newspaper social network, live, 24 hours a day, while people grab for strong co-related content and discuss it as it happens. One strong journal article, could in facto, evolve to social collective knowledge and awareness as never before. That, in reality is something that classic journalism could use as and edge for their (nowadays awful) market approach. Providing not only good content, but along with it, an extra service not available anyware (which is in some way, priceless): The chance to provide co-related real-time meta-content. Not one view, but many aggregated views.  Edited real-world real-time good quality journalism which has the potential of an “endless” price, namely these days. On the other hand, what we now see is that news CEO’s along with some editors still keep their minds on 19th century journalism.  For worse, due to their legitimic panic. However, meanwhile, the world has indeed evolved.

[] Vitorino Ramos, Juan J. Merelo, Self-Organized Stigmergic Document Maps: Environment as a Mechanism for Context Learning, in AEB´2002 – 1st Spanish Conference on Evolutionary and Bio-Inspired Algorithms, E. Alba, F. Herrera, J.J. Merelo et al. (Eds.), pp. 284-293, Centro Univ. de Mérida, Mérida, Spain, 6-8 Feb. 2002.

Social insect societies and more specifically ant colonies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases exceed the individual capabilities of a single ant. The study of ant colonies behavior and of their self-organizing capabilities is of interest to knowledge retrieval/management and decision support systems sciences, because it provides models of distributed adaptive organization which are useful to solve difficult optimization, classification, and distributed control problems, among others. In the present work we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we present a novel strategy to tackle unsupervised clustering as well as data retrieval problems. The present ant clustering system (ACLUSTER) avoids not only short-term memory based strategies, as well as the use of several artificial ant types (using different speeds), present in some recent approaches. Moreover and according to our knowledge, this is also the first application of ant systems into textual document clustering.

(to obtain the respective PDF file follow link above or visit chemoton.org)

Video – Awesome choice by Tim Burton. It fits him like a glove. Here is the official Tim Burton’s Alice in Wonderland teaser trailer (just uploaded yesterday). Alice in Wonderland is directed by visionary director Tim Burton, of everything from Pee-Wee’s Big Adventure to Beetlejuice to Batman to Edward Scissor hands to Mars Attacks to Sleepy Hollow to Charlie and the Chocolate Factory to Sweeney Todd most recently. This is based on Lewis Carroll’s beloved series of books that were first published in 1865. Disney is bringing Tim Burton’s Alice in Wonderland to both digital 3D and 2D theaters everywhere on March 5th, 2010 early next year (more). Finally, just one personal thought. Soon, Tim Burton’s will stand for cinema, as what Jules Verne represented in literature.

In 1973, under several ongoing works on Co-Evolution and Evolutionary theory, L. van Alen proposed a new hypothesis: the Red Queen effect [1]. According to him, several different species will migth propably undergo and submit themselves to a continuous re-adapation [2,3], being it genetic or synaptic, only to end themselves at the point they started. A kind of arms races between species [4], potentially leading to specialization, as well as evolutionary Punctuated equilibria [5,6].

Van Alen chose the name “Red Queen” in allusion to the romance “Alice in Wonderland”, from Charles Lutwidge Dodgson (better known as Lewis Carroll) published in 1865. Over this country (Wonderland) it was usual to run as quick as you could, just to end yourself at the same place. The dialogs between Alice and the Red Queen are sintomatic:

[…] ‘Now! Now!’ cried the Queen. ‘Faster! Faster!’ And they went so fast that at last they seemed to skim through the air, hardly touching the ground with their feet, till suddenly, just as Alice was getting quite exhausted, they stopped, and she found herself sitting on the ground, breathless and giddy. The Queen propped her up against a tree, and said kindly, ‘You may rest a little, now. Alice looked round her in great surprise. ‘Why, I do believe we’ve been under this tree the whole time! Everything’s just as it was!’ ‘Of course it is,’ said the Queen. ‘What would you have it?’. ‘Well, in our country, said Alice, still panting a little, ‘you’d generally get to somewhere else – if you ran very fast for a long time as we’ve been doing.’ ‘A slow sort of country!’ said the Queen. ‘Now, here, I see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!‘ […]

Meanwhile, since 2007 (even much earlier!) I have taken Alice into my own arms. In fact, she is not heavy at all. If you feel you should keep running, some should, have a read on “Co-Cognition, Neural Ensembles and Self-Organization“, extended abstract for a seminar talk at ISR – Institute for Systems and Robotics, Technical Univ. of Lisbon (IST), May 31, 2007. Written at Granada University, Spain, 29 May 2007.

[1] van Alen, L. (1973), “A New Evolutionary Law“, Evolutionary Theory, 1, pp. 1-30.
[2] Cliff D., Miller G.F. (1995), “Tracking the Red Queen: Measurements of Adaptive Progress in Co-Evolutionary Simulations“, in F. Moran, A. Moreno, J.J. Merelo and P. Cachon (editors) Advances in Artificial Life: Proceedings of the Third European Conference on Artificial Life (ECAL95). Lecture Notes in Artificial Intelligence 929, Springer- Verlag, pp.200-218.
[3] Cliff D., Miller G.F. (1996), “Co-Evolution of Pursuit and Evasion II: Simulation Methods and Results“. In P. Maes et al. (Eds.), From Animals to Animats IV, Procs. of the Fourth Int. Conf. on Simulation of Adaptive Behaviour, MIT Press, pp. 506-515.
[4] Dawkins R., Krebs J.R. (1979), “Arms Races between and within Species“. In Procs. of the Royal Society of London: Biological Sciences, nº. 205, pp. 489-511.
[5] Eldredge, N., Gould, S. J., “Punctuated equilibria: an alternative to phyletic gradualism“. In: Models In Paleobiology (Ed. by T. J. M. Schopf), 1972.
[6] Gould, S. J., & Eldredge, N., “Punctuated equilibria: the tempo and mode of evolution reconsidered“. Paleobiology, 3, 115-151, 1977.

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter

Archives

Blog Stats

  • 245,324 hits