You are currently browsing the daily archive for 24 November, 2010.

For some seconds, just imagine if bacteria had Twitter… As new research suggests microbial life can – in fact – be even richer: highly social, intricately networked, and teeming with interactions. So it’s probably time for you to say hello to… several trillion of your inner body friends. So much so, that the metabolic activity performed by these bacteria is equal to that of a virtual organ, leading to gut bacteria being termed a “forgotten” organ [O’Hara and Shanahan, “The gut flora as a forgotten organ“. EMBO reports 7, 688 – 693 (01 Jul 2006)]. My question however is, are they doing all these going beyond regular communication?

Flocks of migrating birds and schools of fish are familiar examples of spatial self-organized patterns formed by living organisms through social foraging. Such aggregation patterns are observed not only in colonies of organisms as simple as single-cell bacteria, as interesting as social insects like ants and termites as well as in colonies of multi-cellular vertebrates as complex as birds and fish but also in human societies [14]. Wasps, bees, ants and termites all make effective use of their environment and resources by displaying collective swarm intelligence. For example, termite colonies build nests with a complexity far beyond the comprehension of the individual termite, while ant colonies dynamically allocate labor to various vital tasks such as foraging or defence without any central decision-making ability [8,53].(*)

Slime mould is another perfect example. These are very simple cellular organisms with limited motile and sensory capabilities, but in times of food shortage they aggregate to form a mobile slug capable of transporting the assembled individuals to a few feeding area. Should food shortage persist, they then form into a fruiting body that disperses their spores using the wind, thus ensuring the survival of the colony [30,44,53]. New research suggests that microbial life can be even richer: highly social, intricately networked, and teeming with interactions [47]. Bassler [3] and other researchers have determined that bacteria communicate using molecules comparable to pheromones. By tapping into this cell-to-cell network, microbes are able to collectively track changes in their environment, conspire with their own species, build mutually beneficial alliances with other types of bacteria, gain advantages over competitors, and communicate with their hosts – the sort of collective strategizing typically ascribed to bees, ants, and people, not to bacteria. Eshel Ben-Jacob [6] indicate that bacteria have developed intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively self-organize into highly structured colonies with elevated environmental adaptability, proposing that they maintain linguistic communication. Meaning-based communication permits colonial identity, intentional behavior (e.g. pheromone-based courtship for mating), purposeful alteration of colony structure (e.g. formation of fruiting bodies), decision-making (e.g. to sporulate) and the recognition and identification of other colonies – features we might begin to associate with a bacterial social intelligence. Such a social intelligence, should it exist, would require going beyond communication to encompass unknown additional intracellular processes to generate inheritable colonial memory and commonly shared genomic context. Moreover, Eshel [5,4] argues that colonies of bacteria are able to communicate and even alter their genetic makeup in response to environmental challenges, asserting that the lowly bacteria colony is capable of computing better than the best computers of our time, and attributes to them properties of creativity, intelligence, and even self-awareness.(*)

These self-organizing distributed capabilities were also found in plants. Peak and co-workers [37,2] point out that plants may regulate their uptake and loss of gases by distributed computation – using information processing that involves communication between many interacting units (their stomata). As described by Ball [2], leaves have openings called stomata that open wide to let CO2 in, but close up to prevent precious water vapour from escaping. Plants attempt to regulate their stomata to take in as much CO2 as possible while losing the least amount of water. But they are limited in how well they can do this: leaves are often divided into patches where the stomata are either open or closed, which reduces the efficiency of CO2 uptake. By studying the distributions of these patches of open and closed stomata in leaves of the cocklebur plant, Peak et al. [37] found specific patterns reminiscent of distributed computing. Patches of open or closed stomata sometimes move around a leaf at constant speed, for example. What’s striking is that it is the same form of mechanism that is widely thought to regulate how ants forage. The signals that each ant sends out to other ants, by laying down chemical trails of pheromone, enable the ant community as a whole to find the most abundant food sources. Wilson [54] showed that ants emit specific pheromones and identified the chemicals, the glands that emitted them and even the fixed action responses to each of the various pheromones. He found that pheromones comprise a medium for communication among the ants, allowing fixed action collaboration, the result of which is a group behaviour that is adaptive where the individual’s behaviours are not.(*)

In the offing… we should really look and go beyond regular communication to encompass unknown additional intracellular processes.

(*) excerpts from V. Ramos et al.: [a] Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes. (pdf) / [b] Computational Chemotaxis in Ants and Bacteria over Dynamic Environments. (pdf) / [c] (pdf) Societal Implicit Memory and his Speed on Tracking Dynamic Extrema. (pdf)

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter


Blog Stats

  • 255,000 hits