You are currently browsing the monthly archive for November 2010.

Painting – Paul Klee, detail from “U struji sest pragova“, 1929.

“Nous avons une notion palpable de la métamorphose de la chenille. Nous, certainement, mais non la chenille.” ~ Edgar Allan Poe / “Le principe de l´evolution est beaucoup plus rapide en informatique que chez le bipède.” ~ Jean Dion / “Let chaos storm!… Let cloud shapes swarm!… I wait for form.” ~ Robert Frost

[…] In his notebooks the painter Paul Klee repeatedly insisted, and demonstrated by example, that the processes of genesis and growth that give rise to forms in the world we inhabit are more important than the forms themselves. ‘Form is the end, death’, he wrote. ‘Form-giving is movement, action. Form-giving is life’ (Klee 1973: 269). This, in turn, lay at the heart of his celebrated ‘Creative Credo’ of 1920: ‘Art does not reproduce the visible but makes visible’ (Klee 1961: 76). It does not, in other words, seek to replicate finished forms that are already settled, whether as images in the mind or as objects in the world. It seeks, rather, to join with those very forces that bring form into being. Thus the line grows from a point that has been set in motion, as the plant grows from its seed. Taking their cue from Klee, philosophers Gilles Deleuze and Félix Guattari argue that the essential relation, in a world of life, is not between matter and form, or between substance and attributes, but between materials and forces (Deleuze and Guattari 2004: 377). It is about the way in which materials of all sorts, with various and variable properties, and enlivened by the forces of the Cosmos, mix and meld with one another in the generation of things. And what they seek to overcome in their rhetoric is the lingering influence of a way of thinking about things, and about how they are made and used, that has been around in the western world for the past two millennia and more. It goes back to Aristotle. To create any thing, Aristotle reasoned, you have to bring together form (morphe) and matter (hyle). In the subsequent history of western thought, this hylomorphic model of creation became ever more deeply embedded. But it also became increasingly unbalanced. Form came to be seen as imposed, by an agent with a particular end or goal in mind, while matter – thus rendered passive and inert – was that which was imposed upon. […], in Tim Ingold, “Bringing Things to Life: Creative Entanglements in a World of Materials“, University of Aberdeen, July 2010 – Original version (April 2008 ) presented at ‘Vital Signs: Researching Real Life’, 9 September 2008, University of Manchester. (pdf link)

For some seconds, just imagine if bacteria had Twitter… As new research suggests microbial life can – in fact – be even richer: highly social, intricately networked, and teeming with interactions. So it’s probably time for you to say hello to… several trillion of your inner body friends. So much so, that the metabolic activity performed by these bacteria is equal to that of a virtual organ, leading to gut bacteria being termed a “forgotten” organ [O’Hara and Shanahan, “The gut flora as a forgotten organ“. EMBO reports 7, 688 – 693 (01 Jul 2006)]. My question however is, are they doing all these going beyond regular communication?

Flocks of migrating birds and schools of fish are familiar examples of spatial self-organized patterns formed by living organisms through social foraging. Such aggregation patterns are observed not only in colonies of organisms as simple as single-cell bacteria, as interesting as social insects like ants and termites as well as in colonies of multi-cellular vertebrates as complex as birds and fish but also in human societies [14]. Wasps, bees, ants and termites all make effective use of their environment and resources by displaying collective swarm intelligence. For example, termite colonies build nests with a complexity far beyond the comprehension of the individual termite, while ant colonies dynamically allocate labor to various vital tasks such as foraging or defence without any central decision-making ability [8,53].(*)

Slime mould is another perfect example. These are very simple cellular organisms with limited motile and sensory capabilities, but in times of food shortage they aggregate to form a mobile slug capable of transporting the assembled individuals to a few feeding area. Should food shortage persist, they then form into a fruiting body that disperses their spores using the wind, thus ensuring the survival of the colony [30,44,53]. New research suggests that microbial life can be even richer: highly social, intricately networked, and teeming with interactions [47]. Bassler [3] and other researchers have determined that bacteria communicate using molecules comparable to pheromones. By tapping into this cell-to-cell network, microbes are able to collectively track changes in their environment, conspire with their own species, build mutually beneficial alliances with other types of bacteria, gain advantages over competitors, and communicate with their hosts – the sort of collective strategizing typically ascribed to bees, ants, and people, not to bacteria. Eshel Ben-Jacob [6] indicate that bacteria have developed intricate communication capabilities (e.g. quorum-sensing, chemotactic signalling and plasmid exchange) to cooperatively self-organize into highly structured colonies with elevated environmental adaptability, proposing that they maintain linguistic communication. Meaning-based communication permits colonial identity, intentional behavior (e.g. pheromone-based courtship for mating), purposeful alteration of colony structure (e.g. formation of fruiting bodies), decision-making (e.g. to sporulate) and the recognition and identification of other colonies – features we might begin to associate with a bacterial social intelligence. Such a social intelligence, should it exist, would require going beyond communication to encompass unknown additional intracellular processes to generate inheritable colonial memory and commonly shared genomic context. Moreover, Eshel [5,4] argues that colonies of bacteria are able to communicate and even alter their genetic makeup in response to environmental challenges, asserting that the lowly bacteria colony is capable of computing better than the best computers of our time, and attributes to them properties of creativity, intelligence, and even self-awareness.(*)

These self-organizing distributed capabilities were also found in plants. Peak and co-workers [37,2] point out that plants may regulate their uptake and loss of gases by distributed computation – using information processing that involves communication between many interacting units (their stomata). As described by Ball [2], leaves have openings called stomata that open wide to let CO2 in, but close up to prevent precious water vapour from escaping. Plants attempt to regulate their stomata to take in as much CO2 as possible while losing the least amount of water. But they are limited in how well they can do this: leaves are often divided into patches where the stomata are either open or closed, which reduces the efficiency of CO2 uptake. By studying the distributions of these patches of open and closed stomata in leaves of the cocklebur plant, Peak et al. [37] found specific patterns reminiscent of distributed computing. Patches of open or closed stomata sometimes move around a leaf at constant speed, for example. What’s striking is that it is the same form of mechanism that is widely thought to regulate how ants forage. The signals that each ant sends out to other ants, by laying down chemical trails of pheromone, enable the ant community as a whole to find the most abundant food sources. Wilson [54] showed that ants emit specific pheromones and identified the chemicals, the glands that emitted them and even the fixed action responses to each of the various pheromones. He found that pheromones comprise a medium for communication among the ants, allowing fixed action collaboration, the result of which is a group behaviour that is adaptive where the individual’s behaviours are not.(*)

In the offing… we should really look and go beyond regular communication to encompass unknown additional intracellular processes.

(*) excerpts from V. Ramos et al.: [a] Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes. (pdf) / [b] Computational Chemotaxis in Ants and Bacteria over Dynamic Environments. (pdf) / [c] (pdf) Societal Implicit Memory and his Speed on Tracking Dynamic Extrema. (pdf)

Drawing – “The distinction between “natural” and “artificial” always struck me as somewhat… artificial“, unknown author (source: Abstruse Goose link) via Cesar Reyes | dpr-barcelona, Nov. 2010.

[…] What is nature? has 17 different definitions. The first four definitions make no room for man in nature. Five is a correlationist universe of appearing phenomena. Six is a Newtonian universe of quantifiable forces. Seven defines nature as opposite to culture. Eight defines nature as the present-at-hand. Nine defines nature through conforming to an innate pre-determined behavior. Nine to fourteen define nature through a norm or original consistency. Fifteen defines nature as barbarism. And lastly, seventeen, nature as the absence of God’s will. The distinct thread running through all these definition is that nature is something Other to human beings or that human beings are in but out of joint with nature and with the natural. […], in Mike’s Avoiding the Void blog, “The Great Pan is dead“: A rebuke of the myth of natural balance” (link).

Nature is language. Can you read it? … mull it over.

Swarm Intelligence (SI) is the property of a system whereby the collective behaviours of (unsophisticated) entities interacting locally with their environment cause coherent functional global patterns to emerge. SI provides a basis with which it is possible to explore collective (or distributed) problem solving without centralized control or the provision of a global model. To tackle the formation of a coherent social collective intelligence from individual behaviours, we discuss several concepts related to Self-Organization, Stigmergy and Social Foraging in animals. Then, in a more abstract level we suggest and stress the role played not only by the environmental media as a driving force for societal learning, as well as by positive and negative feedbacks produced by the many interactions among agents. Finally, presenting a simple model based on the above features, we will address the collective adaptation of a social community to a cultural (environmental, contextual) or media informational dynamical landscape, represented here – for the purpose of different experiments – by several three-dimensional mathematical functions that suddenly change over time. Results indicate that the collective intelligence is able to cope and quickly adapt to unforeseen situations even when over the same cooperative foraging period, the community is requested to deal with two different and contradictory purposes. [in V.Ramos et al., Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes]

(to obtain the respective PDF file follow link above or visit

Photo – David Hockney “my Mother” polaroid composition photo collage (UK, 1982).

[…] The intense world of differences, in which we find the reason behind qualities and the being of the sensible, is precisely the object of a superior empiricism. This empiricism teaches us a strange ‘reason’, that of the multiple, chaos and difference (nomadic distributions, crowned anarchies). It is always differences which resemble one another, which are analogous, opposed or identical: difference is behind everything, but behind difference there is nothing. Every object, every thing, must see its own identity swallowed up in difference, each being no more than a difference between differences. We know that modern art tends to realise these conditions: in this sense it becomes a veritable theatre of metamorphoses and permutations. A theatre where nothing is fixed, a labyrinth without a thread (Ariadne has hung herself). The work of art leaves the domain of representation in order to become ‘experience’, transcendental empiricism or science of the sensible. […], Gilles Deleuze in “Différence et répétition” 1968 (“Difference and Repetition” translated by Paul Patton, New York: Columbia University Press, 1994).

[...] People should learn how to play Lego with their minds. Concepts are building bricks [...] V. Ramos, 2002.

@ViRAms on Twitter


Blog Stats

  • 254,863 hits