With the ubiquitous use of web-based and wireless Social Networks, people are increasingly using the term “Collective Intelligence“. However, I do have serious doubts they really understand what they meant. Some call it the wisdom of crowds or collective wisdom, others smart mobs, while others wealth of knowledge, world brain and so on. Moreover, turning things worse, there are those also, which tend to see it, or confound it with crowd-sourcing as well as prediction markets. Even if there are some loosely conceptual bridges between all them, it will be probably useful to know that the term was instead been born over the Artificial Intelligence research area, while exploiting stigmergic phenomena (see also Swarm Intelligence) among ensembles of cooperative agents. So what follows is a recent definition provided by Univ. of Alberta, Canada. This entry was added last month (Nov. 2009) at the Dictionary of Cognitive Science (Michael R.W. Dawson, David A. Medler Eds.):

Collective intelligence – is a term that refers to the computational abilities of a group of agents. With collective intelligence, a group is capable of accomplishing a task, or of solving an information processing problem, that is beyond the capabilities of an individual agent.

Collective intelligence depends on more than mere numbers of agents.  For a collective to be considered intelligent, the whole must be greater than the sum of its parts.  This idea has been used to identify the presence of collective intelligence by relating the amount of work done by a collective to the number of agents in the collection (Beni & Wang, 1991). If there is a linear increase in amount of work done as a function of the number of agents, then collective intelligence is not evident. However, if there is a nonlinear increase (e.g., an exponential increase) in the amount of work done as a function of the number of agents, then Beni and Wang argue that this is evidence that the collective is intelligent.

Collective intelligence is of interest in cognitive science because many colonies of social insects appear to exhibit this kind of intelligence, and this has inspired researchers to explore “porting” such processing to robot collectives. As far as robots are concerned, collective intelligence is exciting because it offers the possiblity of developing systems that are scalable (they don’t get disrupted when more agents are added) and flexible (they don’t get disrupted when some agents are damaged or fail) (Sharkey, 2006).


1. Beni, G., & Wang, J. (1991, April 9-11). Theoretical problems for the realization of distributed robotic systems. Paper presented at the IEEE International Conference on Robotics and Automation, Sacramento, CA.
2. Sharkey, A. J. C. (2006). Robots, insects and swarm intelligence. Artificial Intelligence Review, 26(4), 255-268.